These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 33167643)
1. Development of quadrupole susceptibility automatic calculator in sum frequency generation spectroscopy and application to methyl C-H vibrations. Mori W; Wang L; Sato Y; Morita A J Chem Phys; 2020 Nov; 153(17):174705. PubMed ID: 33167643 [TBL] [Abstract][Full Text] [Related]
2. Quadrupole Contribution of C═O Vibrational Band in Sum Frequency Generation Spectra of Organic Carbonates. Wang L; Mori W; Morita A; Kondoh M; Okuno M; Ishibashi TA J Phys Chem Lett; 2020 Oct; 11(20):8527-8531. PubMed ID: 32926624 [TBL] [Abstract][Full Text] [Related]
3. Molecular dynamics simulation of liquid methanol. II. Unified assignment of infrared, Raman, and sum frequency generation vibrational spectra in methyl C-H stretching region. Ishiyama T; Sokolov VV; Morita A J Chem Phys; 2011 Jan; 134(2):024510. PubMed ID: 21241123 [TBL] [Abstract][Full Text] [Related]
4. Computational analysis of the quadrupole contribution in the second-harmonic generation spectroscopy for the water/vapor interface. Shiratori K; Yamaguchi S; Tahara T; Morita A J Chem Phys; 2013 Feb; 138(6):064704. PubMed ID: 23425485 [TBL] [Abstract][Full Text] [Related]
5. IR and SFG vibrational spectroscopy of the water bend in the bulk liquid and at the liquid-vapor interface, respectively. Ni Y; Skinner JL J Chem Phys; 2015 Jul; 143(1):014502. PubMed ID: 26156483 [TBL] [Abstract][Full Text] [Related]
6. Vibrational Sum-Frequency Generation Spectroscopy in the Energy Representation from Dual-Level Molecular Dynamics Simulations. Martins-Costa MTC; Ruiz-López MF J Phys Chem A; 2020 Jul; 124(27):5675-5683. PubMed ID: 32520558 [TBL] [Abstract][Full Text] [Related]
7. Does the Sum-Frequency Generation Signal of Aromatic C-H Vibrations Reflect Molecular Orientation? Matsumura F; Yu CC; Yu X; Chiang KY; Seki T; Bonn M; Nagata Y J Phys Chem B; 2023 Jun; 127(23):5288-5294. PubMed ID: 37284731 [TBL] [Abstract][Full Text] [Related]
8. First-Principles Framework to Compute Sum-Frequency Generation Vibrational Spectra of Semiconductors and Insulators. Wan Q; Galli G Phys Rev Lett; 2015 Dec; 115(24):246404. PubMed ID: 26705645 [TBL] [Abstract][Full Text] [Related]
9. Revisiting the basic theory of sum-frequency generation. Shen YR J Chem Phys; 2020 Nov; 153(18):180901. PubMed ID: 33187404 [TBL] [Abstract][Full Text] [Related]
10. Femtosecond Vibrational Sum-Frequency Generation Spectroscopy of Chiral Molecules in Isotropic Liquid. Lee T; Rhee H; Cho M J Phys Chem Lett; 2018 Dec; 9(23):6723-6730. PubMed ID: 30403871 [TBL] [Abstract][Full Text] [Related]
11. Electric quadrupole contribution to the nonresonant background of sum frequency generation at air/liquid interfaces. Yamaguchi S; Shiratori K; Morita A; Tahara T J Chem Phys; 2011 May; 134(18):184705. PubMed ID: 21568527 [TBL] [Abstract][Full Text] [Related]
12. Theoretical Investigation of C-H Vibrational Spectroscopy. 2. Unified Assignment Method of IR, Raman, and Sum Frequency Generation Spectra of Ethanol. Wang L; Ishiyama T; Morita A J Phys Chem A; 2017 Sep; 121(36):6701-6712. PubMed ID: 28799753 [TBL] [Abstract][Full Text] [Related]
13. Recent progress in theoretical analysis of vibrational sum frequency generation spectroscopy. Morita A; Ishiyama T Phys Chem Chem Phys; 2008 Oct; 10(38):5801-16. PubMed ID: 18818831 [TBL] [Abstract][Full Text] [Related]
14. A theoretical description of the polarization dependence of the sum frequency generation spectroscopy of the water/vapor interface. Perry A; Neipert C; Kasprzyk CR; Green T; Space B; Moore PB J Chem Phys; 2005 Oct; 123(14):144705. PubMed ID: 16238414 [TBL] [Abstract][Full Text] [Related]
15. Chemical Imaging of Surfaces with Sum Frequency Generation Vibrational Spectroscopy. Shah SA; Baldelli S Acc Chem Res; 2020 Jun; 53(6):1139-1150. PubMed ID: 32437170 [TBL] [Abstract][Full Text] [Related]
16. Vibrational Sum Frequency Generation Spectroscopy of the Water Liquid-Vapor Interface from Density Functional Theory-Based Molecular Dynamics Simulations. Sulpizi M; Salanne M; Sprik M; Gaigeot MP J Phys Chem Lett; 2013 Jan; 4(1):83-7. PubMed ID: 26291216 [TBL] [Abstract][Full Text] [Related]
17. Theoretical basis for interpreting heterodyne chirality-selective sum frequency generation spectra of water. Konstantinovsky D; Santiago T; Tremblay M; Simpson GJ; Hammes-Schiffer S; Yan ECY J Chem Phys; 2024 Feb; 160(5):. PubMed ID: 38341693 [TBL] [Abstract][Full Text] [Related]
18. C-H stretching vibrations of methyl, methylene and methine groups at the vapor/alcohol (N = 1-8) interfaces. Lu R; Gan W; Wu BH; Zhang Z; Guo Y; Wang HF J Phys Chem B; 2005 Jul; 109(29):14118-29. PubMed ID: 16852773 [TBL] [Abstract][Full Text] [Related]
19. Density functional theory-based simulations of sum frequency generation spectra involving methyl stretching vibrations: effect of the molecular model on the deduced molecular orientation and comparison with an analytical approach. Cecchet F; Lis D; Caudano Y; Mani AA; Peremans A; Champagne B; Guthmuller J J Phys Condens Matter; 2012 Mar; 24(12):124110. PubMed ID: 22394554 [TBL] [Abstract][Full Text] [Related]
20. Accurate line shapes from sub-1 cm(-1) resolution sum frequency generation vibrational spectroscopy of α-pinene at room temperature. Mifflin AL; Velarde L; Ho J; Psciuk BT; Negre CF; Ebben CJ; Upshur MA; Lu Z; Strick BL; Thomson RJ; Batista VS; Wang HF; Geiger FM J Phys Chem A; 2015 Feb; 119(8):1292-302. PubMed ID: 25647092 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]