These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33167647)

  • 1. Computationally efficient approach for the identification of ice-binding surfaces and how they bind ice.
    Naullage PM; Metya AK; Molinero V
    J Chem Phys; 2020 Nov; 153(17):174106. PubMed ID: 33167647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneous seeded molecular dynamics as a tool to probe the ice nucleating ability of crystalline surfaces.
    Pedevilla P; Fitzner M; Sosso GC; Michaelides A
    J Chem Phys; 2018 Aug; 149(7):072327. PubMed ID: 30134662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revealing Surface Waters on an Antifreeze Protein by Fusion Protein Crystallography Combined with Molecular Dynamic Simulations.
    Sun T; Gauthier SY; Campbell RL; Davies PL
    J Phys Chem B; 2015 Oct; 119(40):12808-15. PubMed ID: 26371748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The microscopic features of heterogeneous ice nucleation may affect the macroscopic morphology of atmospheric ice crystals.
    Cox SJ; Raza Z; Kathmann SM; Slater B; Michaelides A
    Faraday Discuss; 2013; 167():389-403. PubMed ID: 24640502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interfacial Water Arrangement in the Ice-Bound State of an Antifreeze Protein: A Molecular Dynamics Simulation Study.
    Midya US; Bandyopadhyay S
    Langmuir; 2017 Jun; 33(22):5499-5510. PubMed ID: 28505449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is Ice Nucleation by Organic Crystals Nonclassical? An Assessment of the Monolayer Hypothesis of Ice Nucleation.
    Metya AK; Molinero V
    J Am Chem Soc; 2021 Mar; 143(12):4607-4624. PubMed ID: 33729789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of the ice-binding surface on a type III antifreeze protein with a "flatness function" algorithm.
    Yang DS; Hon WC; Bubanko S; Xue Y; Seetharaman J; Hew CL; Sicheri F
    Biophys J; 1998 May; 74(5):2142-51. PubMed ID: 9591641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preordering of water is not needed for ice recognition by hyperactive antifreeze proteins.
    Hudait A; Moberg DR; Qiu Y; Odendahl N; Paesani F; Molinero V
    Proc Natl Acad Sci U S A; 2018 Aug; 115(33):8266-8271. PubMed ID: 29987018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption and structure of water on kaolinite surfaces: possible insight into ice nucleation from grand canonical monte carlo calculations.
    Croteau T; Bertram AK; Patey GN
    J Phys Chem A; 2008 Oct; 112(43):10708-12. PubMed ID: 18785690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydration behavior at the ice-binding surface of the Tenebrio molitor antifreeze protein.
    Midya US; Bandyopadhyay S
    J Phys Chem B; 2014 May; 118(18):4743-52. PubMed ID: 24725212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can clathrates heterogeneously nucleate ice?
    Factorovich MH; Naullage PM; Molinero V
    J Chem Phys; 2019 Sep; 151(11):114707. PubMed ID: 31542043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ice Nucleation Efficiency of Hydroxylated Organic Surfaces Is Controlled by Their Structural Fluctuations and Mismatch to Ice.
    Qiu Y; Odendahl N; Hudait A; Mason R; Bertram AK; Paesani F; DeMott PJ; Molinero V
    J Am Chem Soc; 2017 Mar; 139(8):3052-3064. PubMed ID: 28135412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct calculation of ice homogeneous nucleation rate for a molecular model of water.
    Haji-Akbari A; Debenedetti PG
    Proc Natl Acad Sci U S A; 2015 Aug; 112(34):10582-8. PubMed ID: 26240318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unusual structural properties of water within the hydration shell of hyperactive antifreeze protein.
    Kuffel A; Czapiewski D; Zielkiewicz J
    J Chem Phys; 2014 Aug; 141(5):055103. PubMed ID: 25106616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular simulations of heterogeneous ice nucleation. II. Peeling back the layers.
    Cox SJ; Kathmann SM; Slater B; Michaelides A
    J Chem Phys; 2015 May; 142(18):184705. PubMed ID: 25978903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of surface interactions on heterogeneous ice nucleation for a monatomic water model.
    Reinhardt A; Doye JP
    J Chem Phys; 2014 Aug; 141(8):084501. PubMed ID: 25173015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen-Bonding and Hydrophobic Groups Contribute Equally to the Binding of Hyperactive Antifreeze and Ice-Nucleating Proteins to Ice.
    Hudait A; Qiu Y; Odendahl N; Molinero V
    J Am Chem Soc; 2019 May; 141(19):7887-7898. PubMed ID: 31020830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of glycosylation on hydration behavior at the ice-binding surface of the Ocean Pout type III antifreeze protein: a molecular dynamics simulation.
    Halder S; Mukhopadhyay C
    J Biomol Struct Dyn; 2017 Dec; 35(16):3591-3604. PubMed ID: 27882844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How Size and Aggregation of Ice-Binding Proteins Control Their Ice Nucleation Efficiency.
    Qiu Y; Hudait A; Molinero V
    J Am Chem Soc; 2019 May; 141(18):7439-7452. PubMed ID: 30977366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ice nucleation in emulsified aqueous solutions of antifreeze protein type III and poly(vinyl alcohol).
    Inada T; Koyama T; Goto F; Seto T
    J Phys Chem B; 2011 Jun; 115(24):7914-22. PubMed ID: 21619040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.