These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 33167651)

  • 1. Probing the electrode-solution interfaces in rechargeable batteries by sum-frequency generation spectroscopy.
    Ge A; Inoue KI; Ye S
    J Chem Phys; 2020 Nov; 153(17):170902. PubMed ID: 33167651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extremely Low Resistance of Li
    Kawasoko H; Shiraki S; Suzuki T; Shimizu R; Hitosugi T
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):27498-27502. PubMed ID: 29989389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the Reaction Chemistry during Charging in Aprotic Lithium-Oxygen Batteries: Existing Problems and Solutions.
    Shu C; Wang J; Long J; Liu HK; Dou SX
    Adv Mater; 2019 Apr; 31(15):e1804587. PubMed ID: 30767276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potassium Superoxide: A Unique Alternative for Metal-Air Batteries.
    Xiao N; Ren X; McCulloch WD; Gourdin G; Wu Y
    Acc Chem Res; 2018 Sep; 51(9):2335-2343. PubMed ID: 30178665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solid-State NMR and MRI Spectroscopy for Li/Na Batteries: Materials, Interface, and In Situ Characterization.
    Liu X; Liang Z; Xiang Y; Lin M; Li Q; Liu Z; Zhong G; Fu R; Yang Y
    Adv Mater; 2021 Dec; 33(50):e2005878. PubMed ID: 33788341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limitations in Rechargeability of Li-O2 Batteries and Possible Origins.
    McCloskey BD; Bethune DS; Shelby RM; Mori T; Scheffler R; Speidel A; Sherwood M; Luntz AC
    J Phys Chem Lett; 2012 Oct; 3(20):3043-7. PubMed ID: 26292247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photo-Rechargeable Li-Ion Batteries using TiS
    Kumar A; Hammad R; Pahuja M; Arenal R; Ghosh K; Ghosh S; Narayanan TN
    Small; 2023 Sep; 19(38):e2303319. PubMed ID: 37194967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. XPS investigations of electrolyte/electrode interactions for various Li-ion battery materials.
    Oswald S; Mikhailova D; Scheiba F; Reichel P; Fiedler A; Ehrenberg H
    Anal Bioanal Chem; 2011 May; 400(3):691-6. PubMed ID: 21225245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing Electrochemical Potential Differences over the Solid/Liquid Interface in Li-Ion Battery Model Systems.
    Källquist I; Lindgren F; Lee MT; Shavorskiy A; Edström K; Rensmo H; Nyholm L; Maibach J; Hahlin M
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):32989-32996. PubMed ID: 34251812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling Insight into Battery Electrolyte Electrochemical Stability and Interfacial Structure.
    Borodin O; Ren X; Vatamanu J; von Wald Cresce A; Knap J; Xu K
    Acc Chem Res; 2017 Dec; 50(12):2886-2894. PubMed ID: 29164857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational Exploration of the Li-Electrode|Electrolyte Interface in the Presence of a Nanometer Thick Solid-Electrolyte Interphase Layer.
    Li Y; Leung K; Qi Y
    Acc Chem Res; 2016 Oct; 49(10):2363-2370. PubMed ID: 27689438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-Dimensional Materials to Address the Lithium Battery Challenges.
    Rojaee R; Shahbazian-Yassar R
    ACS Nano; 2020 Mar; 14(3):2628-2658. PubMed ID: 32083832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Importance of Reaction Kinetics and Oxygen Crossover in aprotic Li-O2 Batteries Based on a Dimethyl Sulfoxide Electrolyte.
    Marinaro M; Balasubramanian P; Gucciardi E; Theil S; Jörissen L; Wohlfahrt-Mehrens M
    ChemSusChem; 2015 Sep; 8(18):3139-45. PubMed ID: 26249807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The applications of solid-state NMR and MRI techniques in the study of rechargeable sodium-ion batteries.
    Shan P; Chen J; Tao M; Zhao D; Lin H; Fu R; Yang Y
    J Magn Reson; 2023 Aug; 353():107516. PubMed ID: 37418780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational Design of Electrode-Electrolyte Interphase and Electrolytes for Rechargeable Proton Batteries.
    Su Z; Guo H; Zhao C
    Nanomicro Lett; 2023 Apr; 15(1):96. PubMed ID: 37037988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoarchitecture factors of solid electrolyte interphase formation via 3D nano-rheology microscopy and surface force-distance spectroscopy.
    Chen Y; Wu W; Gonzalez-Munoz S; Forcieri L; Wells C; Jarvis SP; Wu F; Young R; Dey A; Isaacs M; Nagarathinam M; Palgrave RG; Tapia-Ruiz N; Kolosov OV
    Nat Commun; 2023 Mar; 14(1):1321. PubMed ID: 36898996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes.
    Bhatt MD; O'Dwyer C
    Phys Chem Chem Phys; 2015 Feb; 17(7):4799-844. PubMed ID: 25613366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NonAqueous, Metal-Free, and Hybrid Electrolyte Li-Ion O
    Deng H; Qiao Y; Wu S; Qiu F; Zhang N; He P; Zhou H
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):4908-4914. PubMed ID: 30387593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.