These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 33167865)

  • 1. Would large dataset sample size unveil the potential of deep neural networks for improved genome-enabled prediction of complex traits? The case for body weight in broilers.
    Passafaro TL; Lopes FB; Dórea JRR; Craven M; Breen V; Hawken RJ; Rosa GJM
    BMC Genomics; 2020 Nov; 21(1):771. PubMed ID: 33167865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interpretable artificial neural networks incorporating Bayesian alphabet models for genome-wide prediction and association studies.
    Zhao T; Fernando R; Cheng H
    G3 (Bethesda); 2021 Sep; 11(10):. PubMed ID: 34499126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a high-throughput SNP array for sea cucumber (Apostichopus japonicus) and its application in genomic selection with MCP regularized deep neural networks.
    Lv J; Wang Y; Ni P; Lin P; Hou H; Ding J; Chang Y; Hu J; Wang S; Bao Z
    Genomics; 2022 Jul; 114(4):110426. PubMed ID: 35820495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Multiple-Trait Bayesian Lasso for Genome-Enabled Analysis and Prediction of Complex Traits.
    Gianola D; Fernando RL
    Genetics; 2020 Feb; 214(2):305-331. PubMed ID: 31879318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. (Quasi) multitask support vector regression with heuristic hyperparameter optimization for whole-genome prediction of complex traits: a case study with carcass traits in broilers.
    Alves AAC; Fernandes AFA; Lopes FB; Breen V; Hawken R; Gianola D; Rosa GJM
    G3 (Bethesda); 2023 Aug; 13(8):. PubMed ID: 37216670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ridge regression and deep learning models for genome-wide selection of complex traits in New Mexican Chile peppers.
    Lozada DN; Sandhu KS; Bhatta M
    BMC Genom Data; 2023 Dec; 24(1):80. PubMed ID: 38110866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting expected progeny difference for marbling score in Angus cattle using artificial neural networks and Bayesian regression models.
    Okut H; Wu XL; Rosa GJ; Bauck S; Woodward BW; Schnabel RD; Taylor JF; Gianola D
    Genet Sel Evol; 2013 Sep; 45(1):34. PubMed ID: 24024641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing and comparing deep learning and machine learning algorithms for osteoporosis risk prediction.
    Qiu C; Su K; Luo Z; Tian Q; Zhao L; Wu L; Deng H; Shen H
    Front Artif Intell; 2024; 7():1355287. PubMed ID: 38919268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving genomic prediction accuracy for meat tenderness in Nellore cattle using artificial neural networks.
    Brito Lopes F; Magnabosco CU; Passafaro TL; Brunes LC; Costa MFO; Eifert EC; Narciso MG; Rosa GJM; Lobo RB; Baldi F
    J Anim Breed Genet; 2020 Sep; 137(5):438-448. PubMed ID: 32020678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-enable prediction for health traits using high-density SNP panel in US Holstein cattle.
    Lopes F; Rosa G; Pinedo P; Santos JEP; Chebel RC; Galvao KN; Schuenemann GM; Bicalho RC; Gilbert RO; Rodrigez-Zas S; Seabury CM; Thatcher W
    Anim Genet; 2020 Mar; 51(2):192-199. PubMed ID: 31909828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enabling data-limited chemical bioactivity predictions through deep neural network transfer learning.
    Liu R; Laxminarayan S; Reifman J; Wallqvist A
    J Comput Aided Mol Des; 2022 Dec; 36(12):867-878. PubMed ID: 36272041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of neural networks with back-propagation to genome-enabled prediction of complex traits in Holstein-Friesian and German Fleckvieh cattle.
    Ehret A; Hochstuhl D; Gianola D; Thaller G
    Genet Sel Evol; 2015 Mar; 47(1):22. PubMed ID: 25886037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat.
    Pérez-Rodríguez P; Gianola D; González-Camacho JM; Crossa J; Manès Y; Dreisigacker S
    G3 (Bethesda); 2012 Dec; 2(12):1595-605. PubMed ID: 23275882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning versus parametric and ensemble methods for genomic prediction of complex phenotypes.
    Abdollahi-Arpanahi R; Gianola D; Peñagaricano F
    Genet Sel Evol; 2020 Feb; 52(1):12. PubMed ID: 32093611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing genome-wide populus trait prediction through deep convolutional neural networks.
    Duan H; Dai X; Shi Q; Cheng Y; Ge Y; Chang S; Liu W; Wang F; Shi H; Hu J
    Plant J; 2024 Jul; 119(2):735-745. PubMed ID: 38741374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emulator-Based Bayesian Calibration of the CISNET Colorectal Cancer Models.
    Pineda-Antunez C; Seguin C; van Duuren LA; Knudsen AB; Davidi B; Nascimento de Lima P; Rutter C; Kuntz KM; Lansdorp-Vogelaar I; Collier N; Ozik J; Alarid-Escudero F
    Med Decis Making; 2024 Jul; 44(5):543-553. PubMed ID: 38858832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting dry matter intake in Canadian Holstein dairy cattle using milk mid-infrared reflectance spectroscopy and other commonly available predictors via artificial neural networks.
    Shadpour S; Chud TCS; Hailemariam D; Oliveira HR; Plastow G; Stothard P; Lassen J; Baldwin R; Miglior F; Baes CF; Tulpan D; Schenkel FS
    J Dairy Sci; 2022 Oct; 105(10):8257-8271. PubMed ID: 36055837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of the inhibitory concentrations of chloroquine derivatives using deep neural networks models.
    Du Z; Yang H; Lv WJ; Zhang XY; Zhai HL
    J Biomol Struct Dyn; 2021 Feb; 39(2):672-680. PubMed ID: 31918625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of body mass index in mice using dense molecular markers and a regularized neural network.
    Okut H; Gianola D; Rosa GJ; Weigel KA
    Genet Res (Camb); 2011 Jun; 93(3):189-201. PubMed ID: 21481292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.