These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33167867)

  • 1. Temporal transcriptomic differences between tolerant and susceptible genotypes contribute to rice drought tolerance.
    Xia H; Ma X; Xu K; Wang L; Liu H; Chen L; Luo L
    BMC Genomics; 2020 Nov; 21(1):776. PubMed ID: 33167867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative transcriptome sequencing of tolerant rice introgression line and its parents in response to drought stress.
    Huang L; Zhang F; Zhang F; Wang W; Zhou Y; Fu B; Li Z
    BMC Genomics; 2014 Nov; 15(1):1026. PubMed ID: 25428615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Root system architecture, physiological analysis and dynamic transcriptomics unravel the drought-responsive traits in rice genotypes.
    Tiwari P; Srivastava D; Chauhan AS; Indoliya Y; Singh PK; Tiwari S; Fatima T; Mishra SK; Dwivedi S; Agarwal L; Singh PC; Asif MH; Tripathi RD; Shirke PA; Chakrabarty D; Chauhan PS; Nautiyal CS
    Ecotoxicol Environ Saf; 2021 Jan; 207():111252. PubMed ID: 32916530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of drought-responsive transcriptome in Indica rice genotypes with contrasting drought tolerance.
    Lenka SK; Katiyar A; Chinnusamy V; Bansal KC
    Plant Biotechnol J; 2011 Apr; 9(3):315-27. PubMed ID: 20809928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal responses of conserved miRNAs to drought and their associations with drought tolerance and productivity in rice.
    Xia H; Yu S; Kong D; Xiong J; Ma X; Chen L; Luo L
    BMC Genomics; 2020 Mar; 21(1):232. PubMed ID: 32171232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of four functionally important microRNA families with contrasting differential expression profiles between drought-tolerant and susceptible rice leaf at vegetative stage.
    Cheah BH; Nadarajah K; Divate MD; Wickneswari R
    BMC Genomics; 2015 Sep; 16(1):692. PubMed ID: 26369665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomic and metabolomic profiling of drought-tolerant and susceptible sesame genotypes in response to drought stress.
    You J; Zhang Y; Liu A; Li D; Wang X; Dossa K; Zhou R; Yu J; Zhang Y; Wang L; Zhang X
    BMC Plant Biol; 2019 Jun; 19(1):267. PubMed ID: 31221078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of root transcriptome profiles of two pairs of drought-tolerant and susceptible rice near-isogenic lines under different drought stress.
    Moumeni A; Satoh K; Kondoh H; Asano T; Hosaka A; Venuprasad R; Serraj R; Kumar A; Leung H; Kikuchi S
    BMC Plant Biol; 2011 Dec; 11():174. PubMed ID: 22136218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Meta-analysis of drought-tolerant genotypes in Oryza sativa: A network-based approach.
    Sircar S; Parekh N
    PLoS One; 2019; 14(5):e0216068. PubMed ID: 31059518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptomic analysis of Eruca vesicaria subs. sativa lines with contrasting tolerance to polyethylene glycol-simulated drought stress.
    Huang BL; Li X; Liu P; Ma L; Wu W; Zhang X; Li Z; Huang B
    BMC Plant Biol; 2019 Oct; 19(1):419. PubMed ID: 31604421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptomic, biochemical and physio-anatomical investigations shed more light on responses to drought stress in two contrasting sesame genotypes.
    Dossa K; Li D; Wang L; Zheng X; Liu A; Yu J; Wei X; Zhou R; Fonceka D; Diouf D; Liao B; Cissé N; Zhang X
    Sci Rep; 2017 Aug; 7(1):8755. PubMed ID: 28821876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome Analysis of Tolerant and Susceptible Maize Genotypes Reveals Novel Insights about the Molecular Mechanisms Underlying Drought Responses in Leaves.
    Waititu JK; Zhang X; Chen T; Zhang C; Zhao Y; Wang H
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34209553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening of mungbean for drought tolerance and transcriptome profiling between drought-tolerant and susceptible genotype in response to drought stress.
    Kumar S; Ayachit G; Sahoo L
    Plant Physiol Biochem; 2020 Dec; 157():229-238. PubMed ID: 33129069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of gene expression and physiological responses in three Mexican maize landraces under drought stress and recovery irrigation.
    Hayano-Kanashiro C; Calderón-Vázquez C; Ibarra-Laclette E; Herrera-Estrella L; Simpson J
    PLoS One; 2009 Oct; 4(10):e7531. PubMed ID: 19888455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative transcriptome profiles of the WRKY gene family under control, hormone-treated, and drought conditions in near-isogenic rice lines reveal differential, tissue specific gene activation.
    Nuruzzaman M; Sharoni AM; Satoh K; Kumar A; Leung H; Kikuchi S
    J Plant Physiol; 2014 Jan; 171(1):2-13. PubMed ID: 24189206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene network modules associated with abiotic stress response in tolerant rice genotypes identified by transcriptome meta-analysis.
    Smita S; Katiyar A; Lenka SK; Dalal M; Kumar A; Mahtha SK; Yadav G; Chinnusamy V; Pandey DM; Bansal KC
    Funct Integr Genomics; 2020 Jan; 20(1):29-49. PubMed ID: 31286320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative transcriptome and translatome analysis in contrasting rice genotypes reveals differential mRNA translation in salt-tolerant Pokkali under salt stress.
    Li YF; Zheng Y; Vemireddy LR; Panda SK; Jose S; Ranjan A; Panda P; Govindan G; Cui J; Wei K; Yaish MW; Naidoo GC; Sunkar R
    BMC Genomics; 2018 Dec; 19(Suppl 10):935. PubMed ID: 30598105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Weighted gene coexpression network analysis-based identification of key modules and hub genes associated with drought sensitivity in rice.
    Yu B; Liu J; Wu D; Liu Y; Cen W; Wang S; Li R; Luo J
    BMC Plant Biol; 2020 Oct; 20(1):478. PubMed ID: 33081724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Gene Expression Rather than Natural Polymorphism in Coding Sequence of the OsbZIP23 Determines Drought Tolerance and Yield Improvement in Rice Genotypes.
    Dey A; Samanta MK; Gayen S; Sen SK; Maiti MK
    PLoS One; 2016; 11(3):e0150763. PubMed ID: 26959651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of drought-responsive genes in roots of upland rice (Oryza sativa L).
    Rabello AR; Guimarães CM; Rangel PH; da Silva FR; Seixas D; de Souza E; Brasileiro AC; Spehar CR; Ferreira ME; Mehta A
    BMC Genomics; 2008 Oct; 9():485. PubMed ID: 18922162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.