These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33167988)

  • 1. Echolocating bats can adjust sensory acquisition based on internal cues.
    Boonman A; Rieger I; Amichai E; Greif S; Eitan O; Goldshtein A; Yovel Y
    BMC Biol; 2020 Nov; 18(1):166. PubMed ID: 33167988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-board telemetry of emitted sounds from free-flying bats: compensation for velocity and distance stabilizes echo frequency and amplitude.
    Hiryu S; Shiori Y; Hosokawa T; Riquimaroux H; Watanabe Y
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Sep; 194(9):841-51. PubMed ID: 18663454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Doppler-shift compensation behavior in horseshoe bats revisited: auditory feedback controls both a decrease and an increase in call frequency.
    Metzner W; Zhang S; Smotherman M
    J Exp Biol; 2002 Jun; 205(Pt 11):1607-16. PubMed ID: 12000805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precise Doppler shift compensation in the hipposiderid bat, Hipposideros armiger.
    Schoeppler D; Schnitzler HU; Denzinger A
    Sci Rep; 2018 Mar; 8(1):4598. PubMed ID: 29545520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Segregating signal from noise through movement in echolocating bats.
    Taub M; Yovel Y
    Sci Rep; 2020 Jan; 10(1):382. PubMed ID: 31942008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Echo-acoustic flow affects flight in bats.
    Kugler K; Greiter W; Luksch H; Firzlaff U; Wiegrebe L
    J Exp Biol; 2016 Jun; 219(Pt 12):1793-7. PubMed ID: 27045094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensory gaze stabilization in echolocating bats.
    Eitan O; Kosa G; Yovel Y
    Proc Biol Sci; 2019 Oct; 286(1913):20191496. PubMed ID: 31615357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bats adjust their mouth gape to zoom their biosonar field of view.
    Kounitsky P; Rydell J; Amichai E; Boonman A; Eitan O; Weiss AJ; Yovel Y
    Proc Natl Acad Sci U S A; 2015 May; 112(21):6724-9. PubMed ID: 25941395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superfast Lombard response in free-flying, echolocating bats.
    Pedersen MB; Egenhardt M; Beedholm K; Skalshøi MR; Uebel AS; Hubancheva A; Koseva K; Moss CF; Luo J; Stidsholt L; Madsen PT
    Curr Biol; 2024 Jun; 34(11):2509-2516.e3. PubMed ID: 38744283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling perspectives on echolocation strategies inspired by bats flying in groups.
    Lin Y; Abaid N
    J Theor Biol; 2015 Dec; 387():46-53. PubMed ID: 26386143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bats pre-adapt sensory acquisition according to target distance prior to takeoff even in the presence of closer background objects.
    Amichai E; Yovel Y
    Sci Rep; 2017 Mar; 7(1):467. PubMed ID: 28352130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optic and echo-acoustic flow interact in bats.
    Kugler K; Luksch H; Peremans H; Vanderelst D; Wiegrebe L; Firzlaff U
    J Exp Biol; 2019 Mar; 222(Pt 6):. PubMed ID: 30728158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Task-dependent vocal adjustments to optimize biosonar-based information acquisition.
    Lewanzik D; Goerlitz HR
    J Exp Biol; 2021 Jan; 224(Pt 1):. PubMed ID: 33234681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An audio-vocal interface in echolocating horseshoe bats.
    Metzner W
    J Neurosci; 1993 May; 13(5):1899-915. PubMed ID: 8478683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Echolocating bats rely on audiovocal feedback to adapt sonar signal design.
    Luo J; Moss CF
    Proc Natl Acad Sci U S A; 2017 Oct; 114(41):10978-10983. PubMed ID: 28973851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive learning and recall of motor-sensory sequences in adult echolocating bats.
    Taub M; Yovel Y
    BMC Biol; 2021 Aug; 19(1):164. PubMed ID: 34412628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of emission level in approach signals of greater mouse-eared bats (Myotis myotis): No evidence for a closed loop control system for intensity compensation.
    Budenz T; Denzinger A; Schnitzler HU
    PLoS One; 2018; 13(3):e0194600. PubMed ID: 29543882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fine control of call frequency by horseshoe bats.
    Smotherman M; Metzner W
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Jun; 189(6):435-46. PubMed ID: 12761645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flight and echolocation behaviour of whiskered bats commuting along a hedgerow: range-dependent sonar signal design, Doppler tolerance and evidence for 'acoustic focussing'.
    Holderied MW; Jones G; von Helversen O
    J Exp Biol; 2006 May; 209(Pt 10):1816-26. PubMed ID: 16651548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What determines the information update rate in echolocating bats.
    Taub M; Goldshtein A; Boonman A; Eitan O; Hurme E; Greif S; Yovel Y
    Commun Biol; 2023 Nov; 6(1):1187. PubMed ID: 37989853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.