These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 33168632)

  • 21. Membraneless organelles: phasing out of equilibrium.
    Hondele M; Heinrich S; De Los Rios P; Weis K
    Emerg Top Life Sci; 2020 Dec; 4(3):331-342. PubMed ID: 32744309
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Friend or foe-Post-translational modifications as regulators of phase separation and RNP granule dynamics.
    Hofweber M; Dormann D
    J Biol Chem; 2019 May; 294(18):7137-7150. PubMed ID: 30587571
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinase-controlled phase transition of membraneless organelles in mitosis.
    Rai AK; Chen JX; Selbach M; Pelkmans L
    Nature; 2018 Jul; 559(7713):211-216. PubMed ID: 29973724
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein conformation and biomolecular condensates.
    Vazquez DS; Toledo PL; Gianotti AR; Ermácora MR
    Curr Res Struct Biol; 2022; 4():285-307. PubMed ID: 36164646
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oral Antiviral Defense: Saliva- and Beverage-like Hypotonicity Dynamically Regulate Formation of Membraneless Biomolecular Condensates of Antiviral Human MxA in Oral Epithelial Cells.
    Sehgal PB; Yuan H; Centone A; DiSenso-Browne SV
    Cells; 2024 Mar; 13(7):. PubMed ID: 38607029
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Liquid-Liquid Phase Separation in Crowded Environments.
    André AAM; Spruijt E
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32824618
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biological Phase Separation and Biomolecular Condensates in Plants.
    Emenecker RJ; Holehouse AS; Strader LC
    Annu Rev Plant Biol; 2021 Jun; 72():17-46. PubMed ID: 33684296
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases.
    Zhang H; Ji X; Li P; Liu C; Lou J; Wang Z; Wen W; Xiao Y; Zhang M; Zhu X
    Sci China Life Sci; 2020 Jul; 63(7):953-985. PubMed ID: 32548680
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biological Liquid-Liquid Phase Separation, Biomolecular Condensates, and Membraneless Organelles: Now You See Me, Now You Don't.
    Uversky VN
    Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37685957
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Liquid-liquid phase separation: A new perspective to understanding aging and pathogenesis.
    Xia J
    Biosci Trends; 2022 Nov; 16(5):359-362. PubMed ID: 36288994
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cellular stress leads to the formation of membraneless stress assemblies in eukaryotic cells.
    van Leeuwen W; Rabouille C
    Traffic; 2019 Sep; 20(9):623-638. PubMed ID: 31152627
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Liquid-liquid phase separation as a common organizing principle of intracellular space and biomembranes providing dynamic adaptive responses.
    Nesterov SV; Ilyinsky NS; Uversky VN
    Biochim Biophys Acta Mol Cell Res; 2021 Oct; 1868(11):119102. PubMed ID: 34293345
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biophysical studies of phase separation integrating experimental and computational methods.
    Fawzi NL; Parekh SH; Mittal J
    Curr Opin Struct Biol; 2021 Oct; 70():78-86. PubMed ID: 34144468
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biological colloids: Unique properties of membraneless organelles in the cell.
    Bratek-Skicki A; Van Nerom M; Maes D; Tompa P
    Adv Colloid Interface Sci; 2022 Dec; 310():102777. PubMed ID: 36279601
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dipping contacts - a novel type of contact site at the interface between membraneless organelles and membranes.
    Hoffmann C; Milovanovic D
    J Cell Sci; 2023 Dec; 136(24):. PubMed ID: 38149872
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles.
    Nott TJ; Petsalaki E; Farber P; Jervis D; Fussner E; Plochowietz A; Craggs TD; Bazett-Jones DP; Pawson T; Forman-Kay JD; Baldwin AJ
    Mol Cell; 2015 Mar; 57(5):936-947. PubMed ID: 25747659
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Human Antiviral Protein MxA Forms Novel Metastable Membraneless Cytoplasmic Condensates Exhibiting Rapid Reversible Tonicity-Driven Phase Transitions.
    Davis D; Yuan H; Liang FX; Yang YM; Westley J; Petzold C; Dancel-Manning K; Deng Y; Sall J; Sehgal PB
    J Virol; 2019 Nov; 93(22):. PubMed ID: 31484749
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phase-Separated Synthetic Organelles Based on Intrinsically Disordered Protein Domain for Metabolic Pathway Assembly in
    Wan L; Zhu Y; Zhang W; Mu W
    ACS Nano; 2023 Jun; 17(11):10806-10816. PubMed ID: 37191277
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of biomolecular condensates and protein phase separation with microfluidic technology.
    Linsenmeier M; Kopp MRG; Stavrakis S; de Mello A; Arosio P
    Biochim Biophys Acta Mol Cell Res; 2021 Jan; 1868(1):118823. PubMed ID: 32800925
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biomolecular condensates in plant cells: Mediating and integrating environmental signals and development.
    Huang Y; Xia P
    Plant Sci; 2024 Oct; 347():112178. PubMed ID: 38971467
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.