BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 33168804)

  • 1. Genomic landscape and clonal architecture of mouse oral squamous cell carcinomas dictate tumour ecology.
    Sequeira I; Rashid M; Tomás IM; Williams MJ; Graham TA; Adams DJ; Vigilante A; Watt FM
    Nat Commun; 2020 Nov; 11(1):5671. PubMed ID: 33168804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrative genomic and functional analysis of human oral squamous cell carcinoma cell lines reveals synergistic effects of FAT1 and CASP8 inactivation.
    Hayes TF; Benaich N; Goldie SJ; Sipilä K; Ames-Draycott A; Cai W; Yin G; Watt FM
    Cancer Lett; 2016 Dec; 383(1):106-114. PubMed ID: 27693639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutations in long-lived epithelial stem cells and their clonal progeny in pre-malignant lesions and in oral squamous cell carcinoma.
    Melis M; Zhang T; Scognamiglio T; Gudas LJ
    Carcinogenesis; 2020 Nov; 41(11):1553-1564. PubMed ID: 32115621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oral-specific ablation of Klf4 disrupts epithelial terminal differentiation and increases premalignant lesions and carcinomas upon chemical carcinogenesis.
    Paparella ML; Abrigo M; Bal de Kier Joffe E; Raimondi AR
    J Oral Pathol Med; 2015 Nov; 44(10):801-9. PubMed ID: 25605610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oral cavity and esophageal carcinogenesis modeled in carcinogen-treated mice.
    Tang XH; Knudsen B; Bemis D; Tickoo S; Gudas LJ
    Clin Cancer Res; 2004 Jan; 10(1 Pt 1):301-13. PubMed ID: 14734483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Translational genomics and recent advances in oral squamous cell carcinoma.
    Chai AWY; Lim KP; Cheong SC
    Semin Cancer Biol; 2020 Apr; 61():71-83. PubMed ID: 31542510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. p53 gene mutations in sequential oral epithelial dysplasias and squamous cell carcinomas.
    Shahnavaz SA; Regezi JA; Bradley G; Dubé ID; Jordan RC
    J Pathol; 2000 Mar; 190(4):417-22. PubMed ID: 10699989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of expression of basement membrane proteins reflects anomalies of chromosomes 3 and 12 in the rat 4-nitroquinoline-N-oxide model of oral carcinogenesis.
    Patel V; Poulopoulos AK; Levan G; Game SM; Eveson JW; Prime SS
    Carcinogenesis; 1995 Jan; 16(1):17-23. PubMed ID: 7834801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arecoline N-oxide regulates oral squamous cell carcinoma development through NOTCH1 and FAT1 expressions.
    Kuo TM; Nithiyanantham S; Lee CP; Hsu HT; Luo SY; Lin YZ; Yeh KT; Ko YC
    J Cell Physiol; 2019 Aug; 234(8):13984-13993. PubMed ID: 30624777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isoform specific FBXW7 mediates NOTCH1 Abruptex mutation C1133Y deregulation in oral squamous cell carcinoma.
    Zheng Y; Song A; Wang C; Zhang W; Liang D; Ding X; Li G; Zhang H; Zhang W; Du Y; Zhou J; Wu H; Wu Y; Song X
    Cell Death Dis; 2020 Aug; 11(8):615. PubMed ID: 32792479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of P53 mutation and invasion front grading in oral squamous cell carcinomas.
    Tang S; Xu D; Zhou B
    J Huazhong Univ Sci Technolog Med Sci; 2010 Aug; 30(4):525-9. PubMed ID: 20714883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRNA-211 Enhances the Oncogenicity of Carcinogen-Induced Oral Carcinoma by Repressing TCF12 and Increasing Antioxidant Activity.
    Chen YF; Yang CC; Kao SY; Liu CJ; Lin SC; Chang KW
    Cancer Res; 2016 Aug; 76(16):4872-86. PubMed ID: 27221705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Notch1 mutations are drivers of oral tumorigenesis.
    Izumchenko E; Sun K; Jones S; Brait M; Agrawal N; Koch W; McCord CL; Riley DR; Angiuoli SV; Velculescu VE; Jiang WW; Sidransky D
    Cancer Prev Res (Phila); 2015 Apr; 8(4):277-286. PubMed ID: 25406187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Common and complex Notch1 mutations in Chinese oral squamous cell carcinoma.
    Song X; Xia R; Li J; Long Z; Ren H; Chen W; Mao L
    Clin Cancer Res; 2014 Feb; 20(3):701-10. PubMed ID: 24277457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long non-coding RNA highly up-regulated in liver cancer promotes epithelial-to-mesenchymal transition process in oral squamous cell carcinoma.
    Su W; Tang J; Wang Y; Sun S; Shen Y; Yang H
    J Cell Mol Med; 2019 Apr; 23(4):2645-2655. PubMed ID: 30677230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NOTCH1 mutations as prognostic marker in oral squamous cell carcinoma.
    Wu-Chou YH; Hsieh CH; Liao CT; Lin YT; Fan WL; Yang CH
    Pathol Res Pract; 2021 Jul; 223():153474. PubMed ID: 33993060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-specific gene expression patterns in oral cancer.
    Frohwitter G; Buerger H; Korsching E; van Diest PJ; Kleinheinz J; Fillies T
    Head Face Med; 2017 May; 13(1):6. PubMed ID: 28486965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroRNA‑495 targets Notch1 to prohibit cell proliferation and invasion in oral squamous cell carcinoma.
    Lv L; Wang Q; Yang Y; Ji H
    Mol Med Rep; 2019 Jan; 19(1):693-702. PubMed ID: 30387817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methylation-associated gene silencing of RARB in areca carcinogens induced mouse oral squamous cell carcinoma.
    Lai ZL; Tsou YA; Fan SR; Tsai MH; Chen HL; Chang NW; Cheng JC; Chen CM
    Biomed Res Int; 2014; 2014():378358. PubMed ID: 25197641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional and genomic analyses reveal therapeutic potential of targeting β-catenin/CBP activity in head and neck cancer.
    Kartha VK; Alamoud KA; Sadykov K; Nguyen BC; Laroche F; Feng H; Lee J; Pai SI; Varelas X; Egloff AM; Snyder-Cappione JE; Belkina AC; Bais MV; Monti S; Kukuruzinska MA
    Genome Med; 2018 Jul; 10(1):54. PubMed ID: 30029671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.