These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 33168921)

  • 1. Speech in noise perception improved by training fine auditory discrimination: far and applicable transfer of perceptual learning.
    Gao X; Yan T; Huang T; Li X; Zhang YX
    Sci Rep; 2020 Nov; 10(1):19320. PubMed ID: 33168921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transfer of auditory perceptual learning with spectrally reduced speech to speech and nonspeech tasks: implications for cochlear implants.
    Loebach JL; Pisoni DB; Svirsky MA
    Ear Hear; 2009 Dec; 30(6):662-74. PubMed ID: 19773659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auditory cortex responses to interaural time differences in the envelope of low-frequency sound, recorded with MEG in young and older listeners.
    Ross B
    Hear Res; 2018 Dec; 370():22-39. PubMed ID: 30265860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Musician enhancement for speech-in-noise.
    Parbery-Clark A; Skoe E; Lam C; Kraus N
    Ear Hear; 2009 Dec; 30(6):653-61. PubMed ID: 19734788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Audiomotor Perceptual Training Enhances Speech Intelligibility in Background Noise.
    Whitton JP; Hancock KE; Shannon JM; Polley DB
    Curr Biol; 2017 Nov; 27(21):3237-3247.e6. PubMed ID: 29056453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of noise exposure and musical training on suprathreshold auditory processing and speech perception in noise.
    Yeend I; Beach EF; Sharma M; Dillon H
    Hear Res; 2017 Sep; 353():224-236. PubMed ID: 28780178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural correlates of perceptual learning in the auditory brainstem: efferent activity predicts and reflects improvement at a speech-in-noise discrimination task.
    de Boer J; Thornton AR
    J Neurosci; 2008 May; 28(19):4929-37. PubMed ID: 18463246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Masking release with changing fundamental frequency: Electric acoustic stimulation resembles normal hearing subjects.
    Auinger AB; Riss D; Liepins R; Rader T; Keck T; Keintzel T; Kaider A; Baumgartner WD; Gstoettner W; Arnoldner C
    Hear Res; 2017 Jul; 350():226-234. PubMed ID: 28527538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Training speech-in-noise perception in mainstream school children.
    Millward KE; Hall RL; Ferguson MA; Moore DR
    Int J Pediatr Otorhinolaryngol; 2011 Nov; 75(11):1408-17. PubMed ID: 21889805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can basic auditory and cognitive measures predict hearing-impaired listeners' localization and spatial speech recognition abilities?
    Neher T; Laugesen S; Jensen NS; Kragelund L
    J Acoust Soc Am; 2011 Sep; 130(3):1542-58. PubMed ID: 21895093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perception of vowels and prosody by cochlear implant recipients in noise.
    Van Zyl M; Hanekom JJ
    J Commun Disord; 2013; 46(5-6):449-64. PubMed ID: 24157128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitivity to interaural level and envelope time differences of two bilateral cochlear implant listeners using clinical sound processors.
    Laback B; Pok SM; Baumgartner WD; Deutsch WA; Schmid K
    Ear Hear; 2004 Oct; 25(5):488-500. PubMed ID: 15599195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auditory Training Effects on the Listening Skills of Children With Auditory Processing Disorder.
    Loo JH; Rosen S; Bamiou DE
    Ear Hear; 2016; 37(1):38-47. PubMed ID: 26418044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of room acoustic parameters on speech and music perception among participants with cochlear implants.
    Eurich B; Klenzner T; Oehler M
    Hear Res; 2019 Jun; 377():122-132. PubMed ID: 30933704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sleep-Based Memory Consolidation Stabilizes Perceptual Learning of Noise-Vocoded Speech.
    Drouin JR; Zysk VA; Myers EB; Theodore RM
    J Speech Lang Hear Res; 2023 Feb; 66(2):720-734. PubMed ID: 36668820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of training on word-recognition performance in noise for young normal-hearing and older hearing-impaired listeners.
    Burk MH; Humes LE; Amos NE; Strauser LE
    Ear Hear; 2006 Jun; 27(3):263-78. PubMed ID: 16672795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Working memory training to improve speech perception in noise across languages.
    Ingvalson EM; Dhar S; Wong PC; Liu H
    J Acoust Soc Am; 2015 Jun; 137(6):3477-86. PubMed ID: 26093435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural Processing of Acoustic and Electric Interaural Time Differences in Normal-Hearing Gerbils.
    Vollmer M
    J Neurosci; 2018 Aug; 38(31):6949-6966. PubMed ID: 29959238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of stimulus repetition and training schedule on the perceptual learning of time-compressed speech and its transfer.
    Banai K; Lavner Y
    Atten Percept Psychophys; 2019 Nov; 81(8):2944-2955. PubMed ID: 31161493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetric transfer of sound localization learning between indistinguishable interaural cues.
    Sand A; Nilsson ME
    Exp Brain Res; 2014 Jun; 232(6):1707-16. PubMed ID: 24566800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.