These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 33169485)
1. Fe-O Clusters Anchored on Nodes of Metal-Organic Frameworks for Direct Methane Oxidation. Zhao W; Shi Y; Jiang Y; Zhang X; Long C; An P; Zhu Y; Shao S; Yan Z; Li G; Tang Z Angew Chem Int Ed Engl; 2021 Mar; 60(11):5811-5815. PubMed ID: 33169485 [TBL] [Abstract][Full Text] [Related]
2. Zirconium-oxo Nodes of MOFs with Tunable Electronic Properties Provide Effective ⋅OH Species for Enhanced Methane Hydroxylation. Fang G; Hu JN; Tian LC; Liang JX; Lin J; Li L; Zhu C; Wang X Angew Chem Int Ed Engl; 2022 Sep; 61(36):e202205077. PubMed ID: 35768887 [TBL] [Abstract][Full Text] [Related]
3. Retrofitting Zr-Oxo Nodes of UiO-66 by Ru Single Atoms to Boost Methane Hydroxylation with Nearly Total Selectivity. Fang G; Wei F; Lin J; Zhou Y; Sun L; Shang X; Lin S; Wang X J Am Chem Soc; 2023 Jun; 145(24):13169-13180. PubMed ID: 37279334 [TBL] [Abstract][Full Text] [Related]
4. Efficient catalysts of surface hydrophobic Cu-BTC with coordinatively unsaturated Cu(I) sites for the direct oxidation of methane. Li W; Li Z; Zhang H; Liu P; Xie Z; Song W; Liu B; Zhao Z Proc Natl Acad Sci U S A; 2023 Mar; 120(10):e2206619120. PubMed ID: 36848552 [TBL] [Abstract][Full Text] [Related]
5. Bioinspired microenvironment modulation of metal-organic framework-based catalysts for selective methane oxidation. Sui J; Gao ML; Qian B; Liu C; Pan Y; Meng Z; Yuan D; Jiang HL Sci Bull (Beijing); 2023 Sep; 68(17):1886-1893. PubMed ID: 37544879 [TBL] [Abstract][Full Text] [Related]
6. Atomically Dispersed Iron-Copper Dual-Metal Sites Synergistically Boost Carbonylation of Methane. Cheng Q; Yao X; Li G; Li G; Zheng L; Yang K; Emwas AH; Li X; Han Y; Gascon J Angew Chem Int Ed Engl; 2024 Oct; 63(43):e202411048. PubMed ID: 38946177 [TBL] [Abstract][Full Text] [Related]
7. Turning on Visible-Light Photocatalytic C-H Oxidation over Metal-Organic Frameworks by Introducing Metal-to-Cluster Charge Transfer. Xu C; Pan Y; Wan G; Liu H; Wang L; Zhou H; Yu SH; Jiang HL J Am Chem Soc; 2019 Dec; 141(48):19110-19117. PubMed ID: 31707780 [TBL] [Abstract][Full Text] [Related]
8. Pyrazine-based iron metal organic frameworks (Fe-MOFs) with modulated O-Fe-N coordination for enhanced hydroxyl radical generation in Fenton-like process. Li Z; Lu J; Zhang T; Liu Y; Pan R; Fu Q; Liu X; Mao S; Xu B J Colloid Interface Sci; 2024 Nov; 674():279-288. PubMed ID: 38936084 [TBL] [Abstract][Full Text] [Related]
9. Creating enzyme-mimicking nanopockets in metal-organic frameworks for catalysis. Zhang X; Yang C; An P; Cui C; Ma Y; Liu H; Wang H; Yan X; Li G; Tang Z Sci Adv; 2022 Oct; 8(40):eadd5678. PubMed ID: 36206342 [TBL] [Abstract][Full Text] [Related]
10. Vanadium(V Wang Y; Zhao L; Ji G; He C; Liu S; Duan C ACS Appl Mater Interfaces; 2022 Jan; 14(2):2794-2804. PubMed ID: 34989552 [TBL] [Abstract][Full Text] [Related]
11. Metal-Oxo Electronic Tuning via In Situ CO Decoration for Promoting Methane Conversion to Oxygenates over Single-Atom Catalysts. Xu W; Liu HX; Hu Y; Wang Z; Huang ZQ; Huang C; Lin J; Chang CR; Wang A; Wang X; Zhang T Angew Chem Int Ed Engl; 2024 Apr; 63(16):e202315343. PubMed ID: 38425130 [TBL] [Abstract][Full Text] [Related]
12. Binary Au-Cu Reaction Sites Decorated ZnO for Selective Methane Oxidation to C1 Oxygenates with Nearly 100% Selectivity at Room Temperature. Luo L; Gong Z; Xu Y; Ma J; Liu H; Xing J; Tang J J Am Chem Soc; 2022 Jan; 144(2):740-750. PubMed ID: 34928583 [TBL] [Abstract][Full Text] [Related]
13. Tuning Lewis Acidity of Metal-Organic Frameworks via Perfluorination of Bridging Ligands: Spectroscopic, Theoretical, and Catalytic Studies. Ji P; Drake T; Murakami A; Oliveres P; Skone JH; Lin W J Am Chem Soc; 2018 Aug; 140(33):10553-10561. PubMed ID: 30045623 [TBL] [Abstract][Full Text] [Related]
14. Catalytic Performance of Zr-Based Metal-Organic Frameworks Zr-abtc and MIP-200 in Selective Oxidations with H Maksimchuk NV; Ivanchikova ID; Cho KH; Zalomaeva OV; Evtushok VY; Larionov KP; Glazneva TS; Chang JS; Kholdeeva OA Chemistry; 2021 Apr; 27(23):6985-6992. PubMed ID: 33559238 [TBL] [Abstract][Full Text] [Related]
15. Single Atom Catalysts for Selective Methane Oxidation to Oxygenates. Kumar P; Al-Attas TA; Hu J; Kibria MG ACS Nano; 2022 Jun; 16(6):8557-8618. PubMed ID: 35638813 [TBL] [Abstract][Full Text] [Related]
16. Highly Selective Photocatalytic Aerobic Oxidation of Methane to Oxygenates with Water over W-doped TiO Huang M; Zhang S; Wu B; Yu X; Gan Y; Lin T; Yu F; Sun Y; Zhong L ChemSusChem; 2022 Jul; 15(14):e202200548. PubMed ID: 35502630 [TBL] [Abstract][Full Text] [Related]
17. Tandem Catalysis for Selective Oxidation of Methane to Oxygenates Using Oxygen over PdCu/Zeolite. Wu B; Lin T; Huang M; Li S; Li J; Yu X; Yang R; Sun F; Jiang Z; Sun Y; Zhong L Angew Chem Int Ed Engl; 2022 Jun; 61(24):e202204116. PubMed ID: 35362182 [TBL] [Abstract][Full Text] [Related]
18. Selective Formation of Acetic Acid and Methanol by Direct Methane Oxidation Using Rhodium Single-Atom Catalysts. Li H; Xiong C; Fei M; Ma L; Zhang H; Yan X; Tieu P; Yuan Y; Zhang Y; Nyakuchena J; Huang J; Pan X; Waegele MM; Jiang DE; Wang D J Am Chem Soc; 2023 May; 145(20):11415-11419. PubMed ID: 37172099 [TBL] [Abstract][Full Text] [Related]
19. Selective Methane Oxidation to Acetic Acid Using Molecular Oxygen over a Mono-Copper Hydroxyl Catalyst. Antil N; Chauhan M; Akhtar N; Kalita R; Manna K J Am Chem Soc; 2023 Mar; 145(11):6156-6165. PubMed ID: 36897313 [TBL] [Abstract][Full Text] [Related]
20. Maximizing Active Fe Species in ZSM-5 Zeolite Using Organic-Template-Free Synthesis for Efficient Selective Methane Oxidation. Cheng Q; Li G; Yao X; Zheng L; Wang J; Emwas AH; Castaño P; Ruiz-Martínez J; Han Y J Am Chem Soc; 2023 Mar; 145(10):5888-5898. PubMed ID: 36786783 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]