These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 33169642)
21. In vivo confocal microscopy of the cornea to assess tissue regenerative response after biomaterial implantation in humans. Lagali N; Griffith M; Fagerholm P Methods Mol Biol; 2013; 1014():211-23. PubMed ID: 23690016 [TBL] [Abstract][Full Text] [Related]
22. [The emerging technology of tissue engineering : Focus on stem cell niche]. Schlötzer-Schrehardt U; Freudenberg U; Kruse FE Ophthalmologe; 2017 Apr; 114(4):327-340. PubMed ID: 28243750 [TBL] [Abstract][Full Text] [Related]
24. Subconjunctival injection of mesenchymal stem cells for corneal failure due to limbal stem cell deficiency: state of the art. Galindo S; de la Mata A; López-Paniagua M; Herreras JM; Pérez I; Calonge M; Nieto-Miguel T Stem Cell Res Ther; 2021 Jan; 12(1):60. PubMed ID: 33441175 [TBL] [Abstract][Full Text] [Related]
25. Generation of a biomimetic human artificial cornea model using Wharton's jelly mesenchymal stem cells. Garzón I; Martín-Piedra MA; Alfonso-Rodríguez C; González-Andrades M; Carriel V; Martínez-Gómez C; Campos A; Alaminos M Invest Ophthalmol Vis Sci; 2014 Jun; 55(7):4073-83. PubMed ID: 24906855 [TBL] [Abstract][Full Text] [Related]
26. Cytocompatibility and Suitability of Protein-Based Biomaterials as Potential Candidates for Corneal Tissue Engineering. Romo-Valera C; Guerrero P; Arluzea J; Etxebarria J; de la Caba K; Andollo N Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33807473 [TBL] [Abstract][Full Text] [Related]
27. Corneal recovery in a rabbit limbal stem cell deficiency model by autologous grafts of tertiary outgrowths from cultivated limbal biopsy explants. Selver OB; Durak I; Gürdal M; Baysal K; Ates H; Ozbek Z; Wang Z; Wu A; Wolosin JM Mol Vis; 2016; 22():138-49. PubMed ID: 26937166 [TBL] [Abstract][Full Text] [Related]
28. Tissue adhesive hyaluronic acid hydrogels for sutureless stem cell delivery and regeneration of corneal epithelium and stroma. Koivusalo L; Kauppila M; Samanta S; Parihar VS; Ilmarinen T; Miettinen S; Oommen OP; Skottman H Biomaterials; 2019 Dec; 225():119516. PubMed ID: 31574405 [TBL] [Abstract][Full Text] [Related]
29. [Porous matrix and primary-cell culture: a shared concept for skin and cornea tissue engineering]. Auxenfans C; Builles N; Andre V; Lequeux C; Fievet A; Rose S; Braye FM; Fradette J; Janin-Manificat H; Nataf S; Burillon C; Damour O Pathol Biol (Paris); 2009 Jun; 57(4):290-8. PubMed ID: 18602223 [TBL] [Abstract][Full Text] [Related]
30. A new fish scale-derived scaffold for corneal regeneration. Lin CC; Ritch R; Lin SM; Ni MH; Chang YC; Lu YL; Lai HJ; Lin FH Eur Cell Mater; 2010 Feb; 19():50-7. PubMed ID: 20186665 [TBL] [Abstract][Full Text] [Related]
31. Development of Decellularized Cornea by Organic Acid Treatment for Corneal Regeneration. Lin HJ; Wang TJ; Li TW; Chang YY; Sheu MT; Huang YY; Liu DZ Tissue Eng Part A; 2019 Apr; 25(7-8):652-662. PubMed ID: 30244654 [TBL] [Abstract][Full Text] [Related]
32. Application of biomaterials and nanotechnology in corneal tissue engineering. Soleimani M; Ebrahimi Z; Ebrahimi KS; Farhadian N; Shahlaei M; Cheraqpour K; Ghasemi H; Moradi S; Chang AY; Sharifi S; Baharnoori SM; Djalilian AR J Int Med Res; 2023 Jul; 51(7):3000605231190473. PubMed ID: 37523589 [TBL] [Abstract][Full Text] [Related]
33. Comprehensive review of the state-of-the-art in corneal 3D bioprinting, including regulatory aspects. Gómez-Fernández H; Alhakim-Khalak F; Ruiz-Alonso S; Díaz A; Tamayo J; Ramalingam M; Larra E; Pedraz JL Int J Pharm; 2024 Sep; 662():124510. PubMed ID: 39053675 [TBL] [Abstract][Full Text] [Related]
34. Surface epithelialization of the type I Boston keratoprosthesis front plate: immunohistochemical and high-definition optical coherence tomography characterization. Kiang L; Rosenblatt MI; Sartaj R; Fernandez AG; Kiss S; Radcliffe NM; D'Amico DJ; Sippel KC Graefes Arch Clin Exp Ophthalmol; 2012 Aug; 250(8):1195-9. PubMed ID: 22371021 [TBL] [Abstract][Full Text] [Related]
35. [Perspectives of the Cell Therapy in Ophthalmology1. The Application of Stem Cells in the Regeneration of Damaged Surface of the Eye]. Javorková E; Holáň V Cesk Slov Oftalmol; 2016 Feb; 72(1):268-71. PubMed ID: 27041281 [TBL] [Abstract][Full Text] [Related]
36. Characterization, isolation, expansion and clinical therapy of human corneal epithelial stem/progenitor cells. Li DQ; Wang Z; Yoon KC; Bian F J Stem Cells; 2014; 9(2):79-91. PubMed ID: 25158157 [TBL] [Abstract][Full Text] [Related]
38. Alternatives to eye bank native tissue for corneal stromal replacement. Brunette I; Roberts CJ; Vidal F; Harissi-Dagher M; Lachaine J; Sheardown H; Durr GM; Proulx S; Griffith M Prog Retin Eye Res; 2017 Jul; 59():97-130. PubMed ID: 28450146 [TBL] [Abstract][Full Text] [Related]
39. Future perspectives for regenerative medicine in ophthalmology. Elisseeff J; Madrid MG; Lu Q; Chae JJ; Guo Q Middle East Afr J Ophthalmol; 2013; 20(1):38-45. PubMed ID: 23580850 [TBL] [Abstract][Full Text] [Related]
40. Corneal regeneration strategies: From stem cell therapy to tissue engineered stem cell scaffolds. Wang M; Li Y; Wang H; Li M; Wang X; Liu R; Zhang D; Xu W Biomed Pharmacother; 2023 Sep; 165():115206. PubMed ID: 37494785 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]