BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33169779)

  • 1. Single molecule force spectroscopy reveals that a two-coordinate ferric site is critical for the folding of holo-rubredoxin.
    Li J; Li H
    Nanoscale; 2020 Nov; 12(44):22564-22573. PubMed ID: 33169779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible unfolding-refolding of rubredoxin: a single-molecule force spectroscopy study.
    Zheng P; Wang Y; Li H
    Angew Chem Int Ed Engl; 2014 Dec; 53(51):14060-3. PubMed ID: 25314323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single molecule force spectroscopy reveals that iron is released from the active site of rubredoxin by a stochastic mechanism.
    Zheng P; Takayama SJ; Mauk AG; Li H
    J Am Chem Soc; 2013 May; 135(21):7992-8000. PubMed ID: 23627554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single molecule force spectroscopy reveals the molecular mechanical anisotropy of the FeS4 metal center in rubredoxin.
    Zheng P; Chou CC; Guo Y; Wang Y; Li H
    J Am Chem Soc; 2013 Nov; 135(47):17783-92. PubMed ID: 24171546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural features and stability of apo- and holo-forms of a simple iron-sulfur protein.
    Almeida AV; Jacinto JP; Guerra JPL; Vieira BJC; Waerenborgh JC; Jones NC; Hoffmann SV; Pereira AS; Tavares P
    Eur Biophys J; 2021 May; 50(3-4):561-570. PubMed ID: 34009405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single Molecule Force Spectroscopy Studies on Metalloproteins: Opportunities and Challenges.
    Li H
    Langmuir; 2023 Jan; 39(4):1345-1353. PubMed ID: 36647634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal stability of the [Fe(SCys)(4)] site in Clostridium pasteurianum rubredoxin: contributions of the local environment and Cys ligand protonation.
    Bonomi F; Burden AE; Eidsness MK; Fessas D; Iametti S; Kurtz DM; Mazzini S; Scott RA; Zeng Q
    J Biol Inorg Chem; 2002 Apr; 7(4-5):427-36. PubMed ID: 11941500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zinc- and iron-rubredoxins from Clostridium pasteurianum at atomic resolution: a high-precision model of a ZnS4 coordination unit in a protein.
    Dauter Z; Wilson KS; Sieker LC; Moulis JM; Meyer J
    Proc Natl Acad Sci U S A; 1996 Aug; 93(17):8836-40. PubMed ID: 8799113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assembly of a [2Fe-2S]2+ cluster in a molecular variant of Clostridium pasteurianum rubredoxin.
    Meyer J; Gagnon J; Gaillard J; Lutz M; Achim C; Münck E; Pétillot Y; Colangelo CM; Scott RA
    Biochemistry; 1997 Oct; 36(43):13374-80. PubMed ID: 9341230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of rubredoxin from Desulfovibrio gigas to ultra-high 0.68 A resolution.
    Chen CJ; Lin YH; Huang YC; Liu MY
    Biochem Biophys Res Commun; 2006 Oct; 349(1):79-90. PubMed ID: 16930541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MCD spectra of iron-sulfur complexes with or without inorganic sulfur.
    Muraoka T; Nozawa T; Hatano M
    Bioinorg Chem; 1978; 8(1):45-59. PubMed ID: 623833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The de novo design of a rubredoxin-like Fe site.
    Farinas E; Regan L
    Protein Sci; 1998 Sep; 7(9):1939-46. PubMed ID: 9761474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A ligand field analysis of the spectroscopic differences between rubredoxin and desulforedoxin in the reduced state.
    Bertrand P; Gayda JP
    Biochim Biophys Acta; 1988 Jun; 954(3):347-50. PubMed ID: 3370220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct measurements of the mechanical stability of zinc-thiolate bonds in rubredoxin by single-molecule atomic force microscopy.
    Zheng P; Li H
    Biophys J; 2011 Sep; 101(6):1467-73. PubMed ID: 21943428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mössbauer, EPR, and MCD studies of the C9S and C42S variants of Clostridium pasteurianum rubredoxin and MDC studies of the wild-type protein.
    Yoo SJ; Meyer J; Achim C; Peterson J; Hendrich MP; Münck E
    J Biol Inorg Chem; 2000 Aug; 5(4):475-87. PubMed ID: 10968619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rubredoxin refolding on nanostructured hydrophobic surfaces: evidence for a new type of biomimetic chaperones.
    Miriani M; Iametti S; Kurtz DM; Bonomi F
    Proteins; 2014 Nov; 82(11):3154-62. PubMed ID: 25143010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Femtomolar Zn(II) affinity in a peptide-based ligand designed to model thiolate-rich metalloprotein active sites.
    Petros AK; Reddi AR; Kennedy ML; Hyslop AG; Gibney BR
    Inorg Chem; 2006 Dec; 45(25):9941-58. PubMed ID: 17140191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NH---S hydrogen bonds in Peptococcus aerogenes ferredoxin, Clostridium pasteurianum rubredoxin, and Chromatium high potential iron protein.
    Adman E; Watenpaugh KD; Jensen LH
    Proc Natl Acad Sci U S A; 1975 Dec; 72(12):4854-8. PubMed ID: 1061073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic characterization of 57Fe-reconstituted rubrerythrin, a non-heme iron protein with structural analogies to ribonucleotide reductase.
    Ravi N; Prickril BC; Kurtz DM; Huynh BH
    Biochemistry; 1993 Aug; 32(33):8487-91. PubMed ID: 8395205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen bond strength modulates the mechanical strength of ferric-thiolate bonds in rubredoxin.
    Zheng P; Takayama SJ; Mauk AG; Li H
    J Am Chem Soc; 2012 Mar; 134(9):4124-31. PubMed ID: 22309227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.