These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33169779)

  • 21. Synthetic analogs of active sites of iron-sulfur proteins: bis (o-xylyldithiolato) ferrate (III) monoanion, a structurally unconstrained model for the rubredoxin Fe-S4 unit.
    Lane RW; Ibers JA; Frankel RB; Holm RH
    Proc Natl Acad Sci U S A; 1975 Aug; 72(8):2868-72. PubMed ID: 1059080
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Miniaturized metalloproteins: application to iron-sulfur proteins.
    Lombardi A; Marasco D; Maglio O; Di Costanzo L; Nastri F; Pavone V
    Proc Natl Acad Sci U S A; 2000 Oct; 97(22):11922-7. PubMed ID: 11050226
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a Rubredoxin-Type Center Embedded in a de Dovo-Designed Three-Helix Bundle.
    Tebo AG; Pinter TBJ; García-Serres R; Speelman AL; Tard C; Sénéque O; Blondin G; Latour JM; Penner-Hahn J; Lehnert N; Pecoraro VL
    Biochemistry; 2018 Apr; 57(16):2308-2316. PubMed ID: 29561598
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New insights into the folding-unfolding mechanism and conformations of cytochrome C.
    Li J; Li H
    Chem Sci; 2022 Jun; 13(25):7498-7508. PubMed ID: 35872809
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Repeated structure and possible gene duplications in high potential iron protein and rubredoxin.
    McLachlan AD
    J Mol Evol; 1980 Aug; 15(4):309-15. PubMed ID: 7411653
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthetic analogues of the active sites of iron-sulfur proteins. 14. Synthesis, properties, and structures of bis(o-xylyl-alpha,alpha'-dithiolato)ferrate(II, III) anions, analogues of oxidized and reduced rubredoxin sites.
    Lane RW; Ibers JA; Frankel RB; Papaefthymiou GC; Holm RH
    J Am Chem Soc; 1977 Jan; 99(1):84-98. PubMed ID: 830690
    [No Abstract]   [Full Text] [Related]  

  • 27. Determination of the iron-sulfur distances in rubredoxin by x-ray absorption spectroscopy.
    Shulman RG; Eisenberger P; Blumberg WE; Stombaugh NA
    Proc Natl Acad Sci U S A; 1975 Oct; 72(10):4003-7. PubMed ID: 1060082
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Incorporation of molybdenum in rubredoxin: models for mononuclear molybdenum enzymes.
    Maiti BK; Maia LB; Silveira CM; Todorovic S; Carreira C; Carepo MS; Grazina R; Moura I; Pauleta SR; Moura JJ
    J Biol Inorg Chem; 2015 Jul; 20(5):821-9. PubMed ID: 25948393
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solution structure of the two-iron rubredoxin of Pseudomonas oleovorans determined by NMR spectroscopy and solution X-ray scattering and interactions with rubredoxin reductase.
    Perry A; Tambyrajah W; Grossmann JG; Lian LY; Scrutton NS
    Biochemistry; 2004 Mar; 43(11):3167-82. PubMed ID: 15023067
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct Measurements of the Cobalt-Thiolate Bonds Strength in Rubredoxin by Single-Molecule Force Spectroscopy.
    Shi S; Wu T; Zheng P
    Chembiochem; 2022 Jun; 23(12):e202200165. PubMed ID: 35475313
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of a mutated rubredoxin with a cysteine ligand of the iron replaced by serine.
    Meyer J; Gaillard J; Lutz M
    Biochem Biophys Res Commun; 1995 Jul; 212(3):827-33. PubMed ID: 7626117
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The unique hydrogen bonded water in the reduced form of Clostridium pasteurianum rubredoxin and its possible role in electron transfer.
    Park IY; Youn B; Harley JL; Eidsness MK; Smith E; Ichiye T; Kang C
    J Biol Inorg Chem; 2004 Jun; 9(4):423-8. PubMed ID: 15067525
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two-iron rubredoxin of Pseudomonas oleovorans: production, stability and characterization of the individual iron-binding domains by optical, CD and NMR spectroscopies.
    Perry A; Lian LY; Scrutton NS
    Biochem J; 2001 Feb; 354(Pt 1):89-98. PubMed ID: 11171083
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conversion of desulforedoxin into a rubredoxin center.
    Yu L; Kennedy M; Czaja C; Tavares P; Moura JJ; Moura I; Rusnak F
    Biochem Biophys Res Commun; 1997 Feb; 231(3):679-82. PubMed ID: 9070870
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The iron-sulfur environment in rubredoxin.
    Bunker B; Stern EA
    Biophys J; 1977 Sep; 19(3):253-64. PubMed ID: 890038
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical Unfolding Pathway of the High-Potential Iron-Sulfur Protein Revealed by Single-Molecule Atomic Force Microscopy: Toward a General Unfolding Mechanism for Iron-sulfur Proteins.
    Li J; Li H
    J Phys Chem B; 2018 Oct; 122(40):9340-9349. PubMed ID: 30212202
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A rubredoxin-like mononuclear FeS4 derivative of adrenal iron-sulfur protein (adrenodoxin).
    Sugiura Y; Ishizu K; Kimura T
    Biochem Biophys Res Commun; 1974 Sep; 60(1):334-40. PubMed ID: 4370743
    [No Abstract]   [Full Text] [Related]  

  • 38. Resonance Raman spectroscopic evidence for the FeS4 and Fe-O-Fe sites in rubrerythrin from Desulfovibrio vulgaris.
    Dave BC; Czernuszewicz RS; Prickril BC; Kurtz DM
    Biochemistry; 1994 Mar; 33(12):3572-6. PubMed ID: 8142354
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of cysteine ligands in metalloproteins using optical and NMR spectroscopy: cadmium-substituted rubredoxin as a model [Cd(CysS)4]2- center.
    Henehan CJ; Pountney DL; Zerbe O; Vasák M
    Protein Sci; 1993 Oct; 2(10):1756-64. PubMed ID: 8251947
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of cofactors in metalloprotein folding.
    Wilson CJ; Apiyo D; Wittung-Stafshede P
    Q Rev Biophys; 2004; 37(3-4):285-314. PubMed ID: 16194296
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.