These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33169782)

  • 21. Facile Selective and Diverse Fabrication of Superhydrophobic, Superoleophobic-Superhydrophilic and Superamphiphobic Materials from Kaolin.
    Qu M; Ma X; He J; Feng J; Liu S; Yao Y; Hou L; Liu X
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):1011-1020. PubMed ID: 27959496
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simultaneous and controlled release of two different bioactive small molecules from nature inspired single material.
    Rather AM; Shome A; Bhunia BK; Panuganti A; Mandal BB; Manna U
    J Mater Chem B; 2018 Dec; 6(46):7692-7702. PubMed ID: 32254891
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selective Cooperation with Liquids for Environmentally Friendly and Comprehensive Oil-Water Separation.
    Parbat D; Manna U
    ChemSusChem; 2017 Dec; 10(24):4839-4844. PubMed ID: 29083120
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Facile synthesis of a two-tier hierarchical structured superhydrophobic-superoleophilic melamine sponge for rapid and efficient oil/water separation.
    Chen J; You H; Xu L; Li T; Jiang X; Li CM
    J Colloid Interface Sci; 2017 Nov; 506():659-668. PubMed ID: 28763770
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Emerging Separation Applications of Surface Superwettability.
    Yong J; Yang Q; Hou X; Chen F
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35215017
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomimetic Multi-Functional Superamphiphobic FOTS-TiO
    Chen L; Guo Z; Liu W
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):27188-27198. PubMed ID: 27652905
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D mossy structures of zinc filaments: A facile strategy for superamphiphobic surface design.
    Zhi S; Wang G; Zeng Z; Zhu L; Liu Z; Zhang D; Xu K; Xue Q
    J Colloid Interface Sci; 2018 Sep; 526():106-113. PubMed ID: 29723791
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioinspired nanoparticle spray-coating for superhydrophobic flexible materials with oil/water separation capabilities.
    Geraldi NR; Dodd LE; Xu BB; Wood D; Wells GG; McHale G; Newton MI
    Bioinspir Biomim; 2018 Feb; 13(2):024001. PubMed ID: 29239856
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Controlled Movement of a Smart Miniature Submarine at Various Interfaces.
    Chu Y; Qin L; Zhen L; Pan Q
    ACS Appl Mater Interfaces; 2018 Jul; 10(29):24899-24904. PubMed ID: 29943972
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Superhydrophobic meshes that can repel hot water and strong corrosive liquids used for efficient gravity-driven oil/water separation.
    Li J; Kang R; Tang X; She H; Yang Y; Zha F
    Nanoscale; 2016 Apr; 8(14):7638-45. PubMed ID: 26987990
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication techniques for bioinspired, mechanically-durable, superliquiphobic surfaces for water, oil, and surfactant repellency.
    Martin S; Brown PS; Bhushan B
    Adv Colloid Interface Sci; 2017 Mar; 241():1-23. PubMed ID: 28143675
    [TBL] [Abstract][Full Text] [Related]  

  • 32. pH-Induced Switchable Superwettability of Efficient Antibacterial Fabrics for Durable Selective Oil/Water Separation.
    Fu Y; Jin B; Zhang Q; Zhan X; Chen F
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):30161-30170. PubMed ID: 28805055
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fast formation of superhydrophobic octadecylphosphonic acid (ODPA) coating for self-cleaning and oil/water separation.
    Dai C; Liu N; Cao Y; Chen Y; Lu F; Feng L
    Soft Matter; 2014 Oct; 10(40):8116-21. PubMed ID: 25177922
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unconventional and Facile Fabrication of Chemically Reactive Silk Fibroin Sponges for Environmental Remediation.
    Shome A; Moses JC; Rather AM; Mandal BB; Manna U
    ACS Appl Mater Interfaces; 2021 May; 13(20):24258-24271. PubMed ID: 33985331
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How Does Chemistry Influence Liquid Wettability on Liquid-Infused Porous Surface?
    Maji K; Das A; Hirtz M; Manna U
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):14531-14541. PubMed ID: 32103660
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Covalently Modulated and Transiently Visible Writing: Rational Association of Two Extremes of Water Wettabilities.
    Das S; Kumar R; Parbat D; Sekula-Neuner S; Hirtz M; Manna U
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2935-2943. PubMed ID: 31852187
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-cleaning MOF: realization of extreme water repellence in coordination driven self-assembled nanostructures.
    Roy S; Suresh VM; Maji TK
    Chem Sci; 2016 Mar; 7(3):2251-2256. PubMed ID: 29910914
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fine Switching between Underwater Superoleophilicity and Underwater Superoleophobicity while Maintaining Superhydrophobicity.
    Tie L; Zhao S; Guo Z; Li J
    Langmuir; 2020 Apr; 36(13):3300-3307. PubMed ID: 32191489
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature.
    Wang B; Liang W; Guo Z; Liu W
    Chem Soc Rev; 2015 Jan; 44(1):336-61. PubMed ID: 25311259
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rational design of materials interface at nanoscale towards intelligent oil-water separation.
    Ge M; Cao C; Huang J; Zhang X; Tang Y; Zhou X; Zhang K; Chen Z; Lai Y
    Nanoscale Horiz; 2018 May; 3(3):235-260. PubMed ID: 32254075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.