These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Predictive modeling for 14-day unplanned hospital readmission risk by using machine learning algorithms. Lo YT; Liao JC; Chen MH; Chang CM; Li CT BMC Med Inform Decis Mak; 2021 Oct; 21(1):288. PubMed ID: 34670553 [TBL] [Abstract][Full Text] [Related]
6. Using machine learning to predict paediatric 30-day unplanned hospital readmissions: a case-control retrospective analysis of medical records, including written discharge documentation. Zhou H; Albrecht MA; Roberts PA; Porter P; Della PR Aust Health Rev; 2021 Jun; 45(3):328-337. PubMed ID: 33840419 [TBL] [Abstract][Full Text] [Related]
11. Machine Learning on Medicare Claims Poorly Predicts the Individual Risk of 30-Day Unplanned Readmission After Total Joint Arthroplasty, Yet Uncovers Interesting Population-level Associations With Annual Procedure Volumes. Kunze KN; So MM; Padgett DE; Lyman S; MacLean CH; Fontana MA Clin Orthop Relat Res; 2023 Sep; 481(9):1745-1759. PubMed ID: 37256278 [TBL] [Abstract][Full Text] [Related]
12. Evaluating machine learning algorithms to Predict 30-day Unplanned REadmission (PURE) in Urology patients. Welvaars K; van den Bekerom MPJ; Doornberg JN; van Haarst EP; BMC Med Inform Decis Mak; 2023 Jun; 23(1):108. PubMed ID: 37312177 [TBL] [Abstract][Full Text] [Related]
13. Predicting conversion of ambulatory ACDF patients to inpatient: a machine learning approach. Schönnagel L; Tani S; Vu-Han TL; Zhu J; Camino-Willhuber G; Dodo Y; Caffard T; Chiapparelli E; Oezel L; Shue J; Zelenty WD; Lebl DR; Cammisa FP; Girardi FP; Sokunbi G; Hughes AP; Sama AA Spine J; 2024 Apr; 24(4):563-571. PubMed ID: 37980960 [TBL] [Abstract][Full Text] [Related]
14. Development and Validation of Unplanned Extubation Prediction Models Using Intensive Care Unit Data: Retrospective, Comparative, Machine Learning Study. Hur S; Min JY; Yoo J; Kim K; Chung CR; Dykes PC; Cha WC J Med Internet Res; 2021 Aug; 23(8):e23508. PubMed ID: 34382940 [TBL] [Abstract][Full Text] [Related]
15. Predicting the risk of emergency admission with machine learning: Development and validation using linked electronic health records. Rahimian F; Salimi-Khorshidi G; Payberah AH; Tran J; Ayala Solares R; Raimondi F; Nazarzadeh M; Canoy D; Rahimi K PLoS Med; 2018 Nov; 15(11):e1002695. PubMed ID: 30458006 [TBL] [Abstract][Full Text] [Related]
16. Development and Validation of an Electronic Health Record-Based Machine Learning Model to Estimate Delirium Risk in Newly Hospitalized Patients Without Known Cognitive Impairment. Wong A; Young AT; Liang AS; Gonzales R; Douglas VC; Hadley D JAMA Netw Open; 2018 Aug; 1(4):e181018. PubMed ID: 30646095 [TBL] [Abstract][Full Text] [Related]
17. Assessment of Machine Learning vs Standard Prediction Rules for Predicting Hospital Readmissions. Morgan DJ; Bame B; Zimand P; Dooley P; Thom KA; Harris AD; Bentzen S; Ettinger W; Garrett-Ray SD; Tracy JK; Liang Y JAMA Netw Open; 2019 Mar; 2(3):e190348. PubMed ID: 30848808 [TBL] [Abstract][Full Text] [Related]
18. Comparison of methods for early-readmission prediction in a high-dimensional heterogeneous covariates and time-to-event outcome framework. Bussy S; Veil R; Looten V; Burgun A; Gaïffas S; Guilloux A; Ranque B; Jannot AS BMC Med Res Methodol; 2019 Mar; 19(1):50. PubMed ID: 30841867 [TBL] [Abstract][Full Text] [Related]
19. Predictive analytics for cardiovascular patient readmission and mortality: An explainable approach. Huberts LCE; Li S; Blake V; Jorm L; Yu J; Ooi SY; Gallego B Comput Biol Med; 2024 May; 174():108321. PubMed ID: 38626511 [TBL] [Abstract][Full Text] [Related]
20. [Constructing a predictive model for the death risk of patients with septic shock based on supervised machine learning algorithms]. Xie Z; Jin J; Liu D; Lu S; Yu H; Han D; Sun W; Huang M Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2024 Apr; 36(4):345-352. PubMed ID: 38813626 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]