These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 33169997)
1. Unbound Natural Organic Matter Competes with Nanoparticles for Internalization Receptors During Cell Uptake. Zhao YT; Yan S; Huang B; Yang L; Ding HM; Wang P; Miao AJ Environ Sci Technol; 2020 Dec; 54(23):15215-15224. PubMed ID: 33169997 [TBL] [Abstract][Full Text] [Related]
2. Bacteria compete with hematite nanoparticles during their uptake by the ciliate Tetrahymena thermophila. Guo WB; Yang LY; Miao AJ J Hazard Mater; 2021 Jun; 411():125098. PubMed ID: 33858088 [TBL] [Abstract][Full Text] [Related]
3. Molecular mechanisms underlying the calcium-mediated uptake of hematite nanoparticles by the ciliate Tetrahymena thermophila. Wu C; Guo WB; Liu YY; Yang L; Miao AJ Environ Pollut; 2021 Nov; 288():117749. PubMed ID: 34329064 [TBL] [Abstract][Full Text] [Related]
4. Relative importance of the humic and fulvic fractions of natural organic matter in the aggregation and deposition of silver nanoparticles. Furman O; Usenko S; Lau BL Environ Sci Technol; 2013 Feb; 47(3):1349-56. PubMed ID: 23298221 [TBL] [Abstract][Full Text] [Related]
5. Influence of alumina coating on characteristics and effects of SiO2 nanoparticles in algal growth inhibition assays at various pH and organic matter contents. Van Hoecke K; De Schamphelaere KA; Ramirez-Garcia S; Van der Meeren P; Smagghe G; Janssen CR Environ Int; 2011 Aug; 37(6):1118-25. PubMed ID: 21377208 [TBL] [Abstract][Full Text] [Related]
6. Natural Organic Matter (NOM) Imparts Molecular-Weight-Dependent Steric Stabilization or Electrostatic Destabilization to Ferrihydrite Nanoparticles. Li Z; Shakiba S; Deng N; Chen J; Louie SM; Hu Y Environ Sci Technol; 2020 Jun; 54(11):6761-6770. PubMed ID: 32250111 [TBL] [Abstract][Full Text] [Related]
7. Effects of pH and natural organic matter (NOM) on the adsorptive removal of CuO nanoparticles by periphyton. Miao L; Wang C; Hou J; Wang P; Ao Y; Dai S; Lv B Environ Sci Pollut Res Int; 2015 May; 22(10):7696-704. PubMed ID: 25510615 [TBL] [Abstract][Full Text] [Related]
8. The effects of extracellular polymeric substances on magnetic iron oxide nanoparticles stability and the removal of microcystin-LR in aqueous environments. Yang Y; Hou J; Wang P; Wang C; Miao L; Ao Y; Wang X; Lv B; You G; Liu Z; Shao Y Ecotoxicol Environ Saf; 2018 Feb; 148():89-96. PubMed ID: 29031879 [TBL] [Abstract][Full Text] [Related]
9. Organic matter excreted by the protozoan Tetrahymena thermophila and its effects on the bioaccumulation of nanoparticles. Zhang KD; Zhang HJ; Song JL; Wang XL; Pan W; Wang M; Huang B; Yang L; Miao AJ J Hazard Mater; 2024 Dec; 480():135972. PubMed ID: 39342842 [TBL] [Abstract][Full Text] [Related]
10. Algal Foods Reduce the Uptake of Hematite Nanoparticles by Downregulating Water Filtration in Daphnia magna. Liu YY; Guo WB; Zhao YT; Xu S; Yang LY; Miao AJ Environ Sci Technol; 2019 Jul; 53(13):7803-7811. PubMed ID: 31244069 [TBL] [Abstract][Full Text] [Related]
11. Activated carbons impregnated with iron oxide nanoparticles for enhanced removal of bisphenol A and natural organic matter. Park HS; Koduru JR; Choo KH; Lee B J Hazard Mater; 2015 Apr; 286():315-24. PubMed ID: 25594935 [TBL] [Abstract][Full Text] [Related]
12. Interpreting the effects of natural organic matter on antimicrobial activity of Ag Liu Y; Yang T; Wang L; Huang Z; Li J; Cheng H; Jiang J; Pang S; Qi J; Ma J Water Res; 2018 Nov; 145():12-20. PubMed ID: 30118974 [TBL] [Abstract][Full Text] [Related]
13. Influence of natural organic matter on the transport and deposition of zinc oxide nanoparticles in saturated porous media. Jiang X; Tong M; Kim H J Colloid Interface Sci; 2012 Nov; 386(1):34-43. PubMed ID: 22840876 [TBL] [Abstract][Full Text] [Related]
14. Particle-Specific Toxicity of Copper Nanoparticles to Soybean (Glycine max L.): Effects of Nanoparticle Concentration and Natural Organic Matter. Xiao Y; Tang W; Peijnenburg WJGM Environ Toxicol Chem; 2021 Oct; 40(10):2825-2835. PubMed ID: 34289521 [TBL] [Abstract][Full Text] [Related]
15. Reciprocal effects of NOM and solution electrolyte ions on aggregation of ferrihydrite nanoparticles. Li Z; Hu Y; Chen Y; Fang S; Liu Y; Tang W; Chen J Chemosphere; 2023 Aug; 332():138918. PubMed ID: 37178934 [TBL] [Abstract][Full Text] [Related]
16. Influence of humic acid and dihydroxy benzoic acid on the agglomeration, adsorption, sedimentation and dissolution of copper, manganese, aluminum and silica nanoparticles - A tentative exposure scenario. Pradhan S; Hedberg J; Rosenqvist J; Jonsson CM; Wold S; Blomberg E; Odnevall Wallinder I PLoS One; 2018; 13(2):e0192553. PubMed ID: 29420670 [TBL] [Abstract][Full Text] [Related]
17. Effect of organic matter on the trophic transfer of silver nanoparticles in an aquatic food chain. Liang D; Fan W; Wu Y; Wang Y J Hazard Mater; 2022 Sep; 438():129521. PubMed ID: 35816795 [TBL] [Abstract][Full Text] [Related]
18. Facet-Dependent Adsorption and Fractionation of Natural Organic Matter on Crystalline Metal Oxide Nanoparticles. Shen Z; Zhang Z; Li T; Yao Q; Zhang T; Chen W Environ Sci Technol; 2020 Jul; 54(14):8622-8631. PubMed ID: 32539365 [TBL] [Abstract][Full Text] [Related]
19. Waterborne and dietary accumulation of well-dispersible hematite nanoparticles by zebrafish at different life stages. Huang B; Cui YQ; Guo WB; Yang L; Miao AJ Environ Pollut; 2020 Apr; 259():113852. PubMed ID: 31887592 [TBL] [Abstract][Full Text] [Related]
20. Copper release from copper nanoparticles in the presence of natural organic matter. Wang LF; Habibul N; He DQ; Li WW; Zhang X; Jiang H; Yu HQ Water Res; 2015 Jan; 68():12-23. PubMed ID: 25462713 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]