These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 33170006)

  • 21. Entropy-Powered Endothermic Energy Transfer from CsPbBr
    He S; Han Y; Guo J; Wu K
    J Phys Chem Lett; 2022 Feb; 13(7):1713-1718. PubMed ID: 35156824
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sensitization enhancement of europium in ZnSe/ZnS core/shell quantum dots induced by efficient energy transfer.
    Liu N; Xu L; Wang H; Xu J; Su W; Ma Z; Chen K
    Luminescence; 2014 Dec; 29(8):1095-101. PubMed ID: 24898670
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient Photoelectrochemical Hydrogen Generation Using Eco-Friendly "Giant" InP/ZnSe Core/Shell Quantum Dots.
    Liu J; Yue S; Zhang H; Wang C; Barba D; Vidal F; Sun S; Wang ZM; Bao J; Zhao H; Selopal GS; Rosei F
    ACS Appl Mater Interfaces; 2023 Jul; 15(29):34797-34808. PubMed ID: 37433096
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Composition-dependent trap distributions in CdSe and InP quantum dots probed using photoluminescence blinking dynamics.
    Chung H; Cho KS; Koh WK; Kim D; Kim J
    Nanoscale; 2016 Jul; 8(29):14109-16. PubMed ID: 27272126
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of Colloidal Blue-Emitting InP/ZnS Core/Shell Quantum Dots with the Assistance of Copper Cations.
    Huang F; Bi C; Guo R; Zheng C; Ning J; Tian J
    J Phys Chem Lett; 2019 Nov; 10(21):6720-6726. PubMed ID: 31549508
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of Alloyed ZnSeTe Quantum Dots as Bright, Color-Pure Blue Emitters.
    Jang EP; Han CY; Lim SW; Jo JH; Jo DY; Lee SH; Yoon SY; Yang H
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):46062-46069. PubMed ID: 31746194
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Triplet Energy Transfer from Perovskite Nanocrystals Mediated by Electron Transfer.
    Luo X; Liang G; Han Y; Li Y; Ding T; He S; Liu X; Wu K
    J Am Chem Soc; 2020 Jun; 142(25):11270-11278. PubMed ID: 32479073
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of far-red- and near-infrared-emitting Cu-doped InP/ZnS (core/shell) quantum dots with controlled doping steps and their surface functionalization for bioconjugation.
    Lim M; Lee W; Bang G; Lee WJ; Park Y; Kwon Y; Jung Y; Kim S; Bang J
    Nanoscale; 2019 May; 11(21):10463-10471. PubMed ID: 31112192
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermally Activated Bright-State Delayed Blue Photoluminescence from InP Quantum Dots.
    Zhang X; Castellano FN
    J Phys Chem Lett; 2022 Apr; 13(16):3706-3711. PubMed ID: 35439008
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photon Upconversion at Organic-Inorganic Interfaces.
    Huang Z; Miyashita T; Tang ML
    Annu Rev Phys Chem; 2024 Jun; 75(1):329-346. PubMed ID: 38382565
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Encapsulation of Cadmium-Free InP/ZnSe/ZnS Quantum Dots in Poly(LMA-co-EGDMA) Microparticles via Co-flow Droplet Microfluidics.
    Babkin IA; Udepurkar AP; Van Avermaet H; de Oliveira-Silva R; Sakellariou D; Hens Z; Van den Mooter G; Kuhn S; Clasen C
    Small Methods; 2023 Jul; 7(7):e2201454. PubMed ID: 36995027
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence.
    Li Y; Hou X; Dai X; Yao Z; Lv L; Jin Y; Peng X
    J Am Chem Soc; 2019 Apr; 141(16):6448-6452. PubMed ID: 30964282
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of indium alloying on the charge carrier dynamics of thick-shell InP/ZnSe quantum dots.
    Freymeyer NJ; Click SM; Reid KR; Chisholm MF; Bradsher CE; McBride JR; Rosenthal SJ
    J Chem Phys; 2020 Apr; 152(16):161104. PubMed ID: 32357779
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultra-small PbS nanocrystals as sensitizers for red-to-blue triplet-fusion upconversion.
    Imperiale CJ; Green PB; Hasham M; Wilson MWB
    Chem Sci; 2021 Nov; 12(42):14111-14120. PubMed ID: 34760195
    [TBL] [Abstract][Full Text] [Related]  

  • 35. InP Quantum Dots: Synthesis and Lighting Applications.
    Chen B; Li D; Wang F
    Small; 2020 Aug; 16(32):e2002454. PubMed ID: 32613755
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NIR-to-visible upconversion in quantum dots
    Meir N; Pinkas I; Oron D
    RSC Adv; 2019 Apr; 9(21):12153-12161. PubMed ID: 35517040
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Trap state mediated triplet energy transfer from CdSe quantum dots to molecular acceptors.
    Jin T; Lian T
    J Chem Phys; 2020 Aug; 153(7):074703. PubMed ID: 32828113
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Emission Enhancement of Cu-Doped InP Quantum Dots through Double Shelling Scheme.
    Kim HJ; Jo JH; Yoon SY; Jo DY; Kim HS; Park B; Yang H
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31311083
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nearly Blinking-Free, High-Purity Single-Photon Emission by Colloidal InP/ZnSe Quantum Dots.
    Chandrasekaran V; Tessier MD; Dupont D; Geiregat P; Hens Z; Brainis E
    Nano Lett; 2017 Oct; 17(10):6104-6109. PubMed ID: 28895398
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controlled Photoinduced Electron Transfer from InP/ZnS Quantum Dots through Cu Doping: A New Prototype for the Visible-Light Photocatalytic Hydrogen Evolution Reaction.
    Bang J; Das S; Yu EJ; Kim K; Lim H; Kim S; Hong JW
    Nano Lett; 2020 Sep; 20(9):6263-6271. PubMed ID: 32813529
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.