These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 33170439)
1. Production of gene-edited pigs harboring orthologous human mutations via double cutting by CRISPR/Cas9 with long single-stranded DNAs as homology-directed repair templates by zygote injection. Xie F; Zhou X; Lin T; Wang L; Liu C; Luo X; Luo L; Chen H; Guo K; Wei H; Wang Y Transgenic Res; 2020 Dec; 29(5-6):587-598. PubMed ID: 33170439 [TBL] [Abstract][Full Text] [Related]
2. Efficient Generation of Gene-Modified Pigs Harboring Precise Orthologous Human Mutation via CRISPR/Cas9-Induced Homology-Directed Repair in Zygotes. Zhou X; Wang L; Du Y; Xie F; Li L; Liu Y; Liu C; Wang S; Zhang S; Huang X; Wang Y; Wei H Hum Mutat; 2016 Jan; 37(1):110-8. PubMed ID: 26442986 [TBL] [Abstract][Full Text] [Related]
3. Comparative analysis of single-stranded DNA donors to generate conditional null mouse alleles. Lanza DG; Gaspero A; Lorenzo I; Liao L; Zheng P; Wang Y; Deng Y; Cheng C; Zhang C; Seavitt JR; DeMayo FJ; Xu J; Dickinson ME; Beaudet AL; Heaney JD BMC Biol; 2018 Jun; 16(1):69. PubMed ID: 29925370 [TBL] [Abstract][Full Text] [Related]
4. Application of long single-stranded DNA donors in genome editing: generation and validation of mouse mutants. Codner GF; Mianné J; Caulder A; Loeffler J; Fell R; King R; Allan AJ; Mackenzie M; Pike FJ; McCabe CV; Christou S; Joynson S; Hutchison M; Stewart ME; Kumar S; Simon MM; Agius L; Anstee QM; Volynski KE; Kullmann DM; Wells S; Teboul L BMC Biol; 2018 Jun; 16(1):70. PubMed ID: 29925374 [TBL] [Abstract][Full Text] [Related]
5. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Paquet D; Kwart D; Chen A; Sproul A; Jacob S; Teo S; Olsen KM; Gregg A; Noggle S; Tessier-Lavigne M Nature; 2016 May; 533(7601):125-9. PubMed ID: 27120160 [TBL] [Abstract][Full Text] [Related]
6. Generation of Mouse Model (KI and CKO) via Easi-CRISPR. Shola DTN; Yang C; Han C; Norinsky R; Peraza RD Methods Mol Biol; 2021; 2224():1-27. PubMed ID: 33606203 [TBL] [Abstract][Full Text] [Related]
7. CRISPR/Cas9-mediated precise genome modification by a long ssDNA template in zebrafish. Bai H; Liu L; An K; Lu X; Harrison M; Zhao Y; Yan R; Lu Z; Li S; Lin S; Liang F; Qin W BMC Genomics; 2020 Jan; 21(1):67. PubMed ID: 31964350 [TBL] [Abstract][Full Text] [Related]
8. Optimization Strategy for Generating Gene-edited Tibet Minipigs by Synchronized Oestrus and Cytoplasmic Microinjection. Chen B; Gu P; Jia J; Liu W; Liu Y; Liu W; Xu T; Lin X; Lin T; Liu Y; Chen H; Xu M; Yuan J; Zhang J; Zhang Y; Xiao D; Gu W Int J Biol Sci; 2019; 15(12):2719-2732. PubMed ID: 31754342 [TBL] [Abstract][Full Text] [Related]
9. CRISPR-Cas9-mediated pinpoint microbial genome editing aided by target-mismatched sgRNAs. Lee HJ; Kim HJ; Lee SJ Genome Res; 2020 May; 30(5):768-775. PubMed ID: 32327447 [TBL] [Abstract][Full Text] [Related]
10. Simple embryo injection of long single-stranded donor templates with the CRISPR/Cas9 system leads to homology-directed repair in Xenopus tropicalis and Xenopus laevis. Nakayama T; Grainger RM; Cha SW Genesis; 2020 Jun; 58(6):e23366. PubMed ID: 32277804 [TBL] [Abstract][Full Text] [Related]
11. Developmental competence of porcine genome-edited zygotes. Gil MA; Martinez CA; Nohalez A; Parrilla I; Roca J; Wu J; Ross PJ; Cuello C; Izpisua JC; Martinez EA Mol Reprod Dev; 2017 Sep; 84(9):814-821. PubMed ID: 28471514 [TBL] [Abstract][Full Text] [Related]
12. New Additions to the CRISPR Toolbox: CRISPR- Shola DTN; Yang C; Kewaldar VS; Kar P; Bustos V CRISPR J; 2020 Apr; 3(2):109-122. PubMed ID: 32315232 [TBL] [Abstract][Full Text] [Related]
13. Frequency of off-targeting in genome edited pigs produced via direct injection of the CRISPR/Cas9 system into developing embryos. Carey K; Ryu J; Uh K; Lengi AJ; Clark-Deener S; Corl BA; Lee K BMC Biotechnol; 2019 May; 19(1):25. PubMed ID: 31060546 [TBL] [Abstract][Full Text] [Related]
14. Homology-Directed Repair by CRISPR-Cas9 Mutagenesis in Nakayama T; Grainger RM; Cha SW Cold Spring Harb Protoc; 2022 Dec; 2022(12):606-615. PubMed ID: 35953242 [TBL] [Abstract][Full Text] [Related]
16. One-Step Generation of Multiple Gene-Edited Pigs by Electroporation of the CRISPR/Cas9 System into Zygotes to Reduce Xenoantigen Biosynthesis. Tanihara F; Hirata M; Nguyen NT; Sawamoto O; Kikuchi T; Otoi T Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33668187 [TBL] [Abstract][Full Text] [Related]
17. Systematic analysis of factors that improve homologous direct repair (HDR) efficiency in CRISPR/Cas9 technique. Di Stazio M; Foschi N; Athanasakis E; Gasparini P; d'Adamo AP PLoS One; 2021; 16(3):e0247603. PubMed ID: 33667229 [TBL] [Abstract][Full Text] [Related]
18. Efficient generation of gene-modified pigs via injection of zygote with Cas9/sgRNA. Wang Y; Du Y; Shen B; Zhou X; Li J; Liu Y; Wang J; Zhou J; Hu B; Kang N; Gao J; Yu L; Huang X; Wei H Sci Rep; 2015 Feb; 5():8256. PubMed ID: 25653176 [TBL] [Abstract][Full Text] [Related]
19. CRISPR-Cas9 Genome Editing in the Moss Physcomitrium (Formerly Physcomitrella) patens. Wu SZ; Ryken SE; Bezanilla M Curr Protoc; 2023 Apr; 3(4):e725. PubMed ID: 37021953 [TBL] [Abstract][Full Text] [Related]
20. Enhancing CRISPR/Cas9-mediated homology-directed repair in mammalian cells by expressing Saccharomyces cerevisiae Rad52. Shao S; Ren C; Liu Z; Bai Y; Chen Z; Wei Z; Wang X; Zhang Z; Xu K Int J Biochem Cell Biol; 2017 Nov; 92():43-52. PubMed ID: 28928041 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]