BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 33170613)

  • 1. Tetrathiafulvalene-Based Metal-Organic Framework as a High-Performance Anode for Lithium-Ion Batteries.
    Weng YG; Yin WY; Jiang M; Hou JL; Shao J; Zhu QY; Dai J
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52615-52623. PubMed ID: 33170613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tetrathiafulvalene-Cobalt Metal-Organic Frameworks for Lithium-Ion Batteries with Superb Rate Capability.
    Weng YG; Ren ZH; Zhang ZR; Shao J; Zhu QY; Dai J
    Inorg Chem; 2021 Nov; 60(22):17074-17082. PubMed ID: 34702033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidatively Doped Tetrathiafulvalene-Based Metal-Organic Frameworks for High Specific Energy of Supercapatteries.
    Ren ZH; Zhang ZR; Ma LJ; Luo CY; Dai J; Zhu QY
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):6621-6630. PubMed ID: 36695585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Green Synthesis of CoZn-Based Metal-Organic Framework (CoZn-MOF) from Waste Polyethylene Terephthalate Plastic As a High-Performance Anode for Lithium-Ion Battery Applications.
    Wang Y; Meng K; Wang H; Si Y; Bai K; Sun S
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):819-832. PubMed ID: 38117931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cobalt- and Cadmium-Based Metal-Organic Frameworks as High-Performance Anodes for Sodium Ion Batteries and Lithium Ion Batteries.
    Dong C; Xu L
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7160-7168. PubMed ID: 28166402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition-Metal-Triggered High-Efficiency Lithium Ion Storage via Coordination Interactions with Redox-Active Croconate in One-Dimensional Metal-Organic Anode Materials.
    Zhang L; Cheng F; Shi W; Chen J; Cheng P
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6398-6406. PubMed ID: 29383935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boosting Lithium Storage of a Metal-Organic Framework via Zinc Doping.
    Gou W; Xu Z; Lin X; Sun Y; Han X; Liu M; Zhang Y
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox-Active Two-Dimensional Tetrathiafulvalene-Copper Metal-Organic Framework with Boosted Electrochemical Performances for Supercapatteries.
    Zhang ZR; Ren ZH; Luo CY; Ma LJ; Dai J; Zhu QY
    Inorg Chem; 2023 Mar; 62(11):4672-4679. PubMed ID: 36883521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple Active Sites: Lithium Storage Mechanism of Cu-TCNQ as an Anode Material for Lithium-Ion Batteries.
    Meng C; Chen T; Fang C; Huang Y; Hu P; Tong Y; Bian T; Zhang J; Wang Z; Yuan A
    Chem Asian J; 2019 Dec; 14(23):4289-4295. PubMed ID: 31612624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper cobalt tin sulphide (Cu
    Inamdar AI; Hou B; Chavan HS; Salunke AS; Han J; Shin G; Park S; Yeon S; Shrestha NK; Im H; Kim H
    Dalton Trans; 2022 Oct; 51(38):14535-14544. PubMed ID: 36073276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced electrochemical performance of Li-Co-BTC ternary metal-organic frameworks as cathode materials for lithium-ion batteries.
    Du ZQ; Li YP; Wang XX; Wang J; Zhai QG
    Dalton Trans; 2019 Feb; 48(6):2013-2018. PubMed ID: 30667015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lithium and Potassium Cations Affect the Performance of Maleamate-Based Organic Anode Materials for Potassium- and Lithium-Ion Batteries.
    Guji KW; Chien WC; Wang FM; Ramar A; Chemere EB; Tiong L; Merinda L
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-organic framework based electrode materials for lithium-ion batteries: a review.
    Mehek R; Iqbal N; Noor T; Amjad MZB; Ali G; Vignarooban K; Khan MA
    RSC Adv; 2021 Sep; 11(47):29247-29266. PubMed ID: 35479575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal Engineering of Naphthalenediimide-Based Metal-Organic Frameworks: Structure-Dependent Lithium Storage.
    Tian B; Ning GH; Gao Q; Tan LM; Tang W; Chen Z; Su C; Loh KP
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31067-31075. PubMed ID: 27786456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co3V2O8 Sponge Network Morphology Derived from Metal-Organic Framework as an Excellent Lithium Storage Anode Material.
    Soundharrajan V; Sambandam B; Song J; Kim S; Jo J; Kim S; Lee S; Mathew V; Kim J
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8546-53. PubMed ID: 26983348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible Lithium Storage in Manganese 1,3,5-Benzenetricarboxylate Metal-Organic Framework with High Capacity and Rate Performance.
    Maiti S; Pramanik A; Manju U; Mahanty S
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16357-63. PubMed ID: 26158782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maleamic Acid as an Organic Anode Material in Lithium-Ion Batteries.
    Atsbeha Kahsay B; Wang FM; Hailu AG; Su CH
    Polymers (Basel); 2020 May; 12(5):. PubMed ID: 32414019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon-coated Ni
    Kouchi K; Tayoury M; Chari A; Hdidou L; Chchiyai Z; El Kamouny K; Tamraoui Y; Manoun B; Alami J; Dahbi M
    Phys Chem Chem Phys; 2024 Feb; 26(9):7492-7503. PubMed ID: 38356390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-situ self-assembled hollow urchins F-Co-MOF on rGO as advanced anodes for lithium-ion and sodium-ion batteries.
    Wei R; Dong Y; Zhang Y; Zhang R; Al-Tahan MA; Zhang J
    J Colloid Interface Sci; 2021 Jan; 582(Pt A):236-245. PubMed ID: 32823125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Potential Hybrid Hole-Transport Material Incorporating a Redox-Active Tetrathiafulvalene Derivative with CuSCN.
    Tang ZZ; Weng YG; Yin WY; Jiang M; Zhu QY; Dai J
    Inorg Chem; 2019 Dec; 58(23):15824-15831. PubMed ID: 31710209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.