These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 33170634)

  • 1. Prospects of an Electroactive Carbon Nanotube Membrane toward Environmental Applications.
    Liu Y; Gao G; Vecitis CD
    Acc Chem Res; 2020 Dec; 53(12):2892-2902. PubMed ID: 33170634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electroactive Membranes for Water Treatment: Enhanced Treatment Functionalities, Energy Considerations, and Future Challenges.
    Zhu X; Jassby D
    Acc Chem Res; 2019 May; 52(5):1177-1186. PubMed ID: 31032611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application and characterization of electroactive membranes based on carbon nanotubes and zerovalent iron nanoparticles.
    Yanez H JE; Wang Z; Lege S; Obst M; Roehler S; Burkhardt CJ; Zwiener C
    Water Res; 2017 Jan; 108():78-85. PubMed ID: 27816193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Performance Electrochemical Catalysts Based on Three-Dimensional Porous Architecture with Conductive Interconnected Networks.
    Wang D; Wang J; Liu ZE; Yang X; Hu X; Deng J; Yang N; Wan Q; Yuan Q
    ACS Appl Mater Interfaces; 2016 Oct; 8(42):28265-28273. PubMed ID: 26441295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical carbon nanotube filter oxidative performance as a function of surface chemistry.
    Gao G; Vecitis CD
    Environ Sci Technol; 2011 Nov; 45(22):9726-34. PubMed ID: 21967752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in carbon nanotube based electrochemical sensors for bioanalytical applications.
    Vashist SK; Zheng D; Al-Rubeaan K; Luong JH; Sheu FS
    Biotechnol Adv; 2011; 29(2):169-88. PubMed ID: 21034805
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Zhou S; Nyholm L; Strømme M; Wang Z
    Acc Chem Res; 2019 Aug; 52(8):2232-2243. PubMed ID: 31290643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon nanotube-based electrochemical biosensing platforms: fundamentals, applications, and future possibilities.
    Luong JH; Male KB; Hrapovic S
    Recent Pat Biotechnol; 2007; 1(2):181-91. PubMed ID: 19075840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemistry at carbon nanotubes: perspective and issues.
    Dumitrescu I; Unwin PR; Macpherson JV
    Chem Commun (Camb); 2009 Dec; (45):6886-901. PubMed ID: 19904345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aligned multiwalled carbon nanotube membranes.
    Hinds BJ; Chopra N; Rantell T; Andrews R; Gavalas V; Bachas LG
    Science; 2004 Jan; 303(5654):62-5. PubMed ID: 14645855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational Design of Diamond Electrodes.
    Yang N; Jiang X
    Acc Chem Res; 2023 Jan; 56(2):117-127. PubMed ID: 36584242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategies for improving the electroactivity and specific metabolic functionality of microorganisms for various microbial electrochemical technologies.
    Chiranjeevi P; Patil SA
    Biotechnol Adv; 2020; 39():107468. PubMed ID: 31707076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sea urchin-like FeOOH functionalized electrochemical CNT filter for one-step arsenite decontamination.
    Liu Y; Yang S; Jiang H; Yang B; Fang X; Shen C; Yang J; Sand W; Li F
    J Hazard Mater; 2021 Apr; 407():124384. PubMed ID: 33229265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon nanotube wires and cables: near-term applications and future perspectives.
    Jarosz P; Schauerman C; Alvarenga J; Moses B; Mastrangelo T; Raffaelle R; Ridgley R; Landi B
    Nanoscale; 2011 Nov; 3(11):4542-53. PubMed ID: 21984338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical behavior of flavin adenine dinucleotide adsorbed onto carbon nanotube and nitrogen-doped carbon nanotube electrodes.
    Goran JM; Stevenson KJ
    Langmuir; 2013 Nov; 29(44):13605-13. PubMed ID: 24156654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous Dechlorination and Advanced Oxidation Using Electrically Conductive Carbon Nanotube Membranes.
    Lee HJ; Zhang N; Ganzoury MA; Wu Y; de Lannoy CF
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34084-34092. PubMed ID: 34270203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Uniform, Flexible Microelectrodes Based on the Clean Single-Walled Carbon Nanotube Thin Film with High Electrochemical Activity.
    Viet NX; Kishimoto S; Ohno Y
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6389-6395. PubMed ID: 30672689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Assembled Three-Dimensional Graphene Macrostructures: Synthesis and Applications in Supercapacitors.
    Xu Y; Shi G; Duan X
    Acc Chem Res; 2015 Jun; 48(6):1666-75. PubMed ID: 26042764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-Doped yolk-shell carbon nanotube composite for enhanced electrochemical performance in a supercapacitor.
    Du J; Liu L; Wu H; Chen A
    Nanoscale; 2019 Dec; 11(47):22796-22803. PubMed ID: 31748771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electroactive membrane with the electroactive layer beneath the separation layer to eliminate the interference of humic acid in the oxidation of antibiotics.
    Mo Y; Li Y; Wang L; Zhang L; Li J
    Water Res; 2023 Jul; 239():120064. PubMed ID: 37201374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.