These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Carbon Shell on Active Nanocatalyst for Stable Electrocatalysis. Yoo JM; Shin H; Chung DY; Sung YE Acc Chem Res; 2022 May; 55(9):1278-1289. PubMed ID: 35436084 [TBL] [Abstract][Full Text] [Related]
6. Epitaxial Growth of Multimetallic Pd@PtM (M = Ni, Rh, Ru) Core-Shell Nanoplates Realized by in Situ-Produced CO from Interfacial Catalytic Reactions. Yan Y; Shan H; Li G; Xiao F; Jiang Y; Yan Y; Jin C; Zhang H; Wu J; Yang D Nano Lett; 2016 Dec; 16(12):7999-8004. PubMed ID: 27960487 [TBL] [Abstract][Full Text] [Related]
7. Exploring Strategies toward Synthetic Precision Control within Core-Shell Nanowires. Salvatore KL; Wong SS Acc Chem Res; 2021 Jun; 54(11):2565-2578. PubMed ID: 33989501 [TBL] [Abstract][Full Text] [Related]
8. Alloying-realloying enabled high durability for Pt-Pd-3d-transition metal nanoparticle fuel cell catalysts. Wu ZP; Caracciolo DT; Maswadeh Y; Wen J; Kong Z; Shan S; Vargas JA; Yan S; Hopkins E; Park K; Sharma A; Ren Y; Petkov V; Wang L; Zhong CJ Nat Commun; 2021 Feb; 12(1):859. PubMed ID: 33558516 [TBL] [Abstract][Full Text] [Related]
9. Principles and Methods for the Rational Design of Core-Shell Nanoparticle Catalysts with Ultralow Noble Metal Loadings. Hunt ST; Román-Leshkov Y Acc Chem Res; 2018 May; 51(5):1054-1062. PubMed ID: 29510023 [TBL] [Abstract][Full Text] [Related]
10. Noble Metal Based Alloy Nanoframes: Syntheses and Applications in Fuel Cells. Nosheen F; Anwar T; Siddique A; Hussain N Front Chem; 2019; 7():456. PubMed ID: 31334215 [TBL] [Abstract][Full Text] [Related]
11. Controlled Dealloying of Alloy Nanoparticles toward Optimization of Electrocatalysis on Spongy Metallic Nanoframes. Li GG; Villarreal E; Zhang Q; Zheng T; Zhu JJ; Wang H ACS Appl Mater Interfaces; 2016 Sep; 8(36):23920-31. PubMed ID: 27557567 [TBL] [Abstract][Full Text] [Related]
12. Design of Ultrathin Pt-Based Multimetallic Nanostructures for Efficient Oxygen Reduction Electrocatalysis. Lai J; Guo S Small; 2017 Dec; 13(48):. PubMed ID: 29116672 [TBL] [Abstract][Full Text] [Related]
13. Tweaking the Interplay among Galvanic Exchange, Oxidative Etching, and Seed-Mediated Deposition toward Architectural Control of Multimetallic Nanoelectrocatalysts. Li GG; Wang Z; Blom DA; Wang H ACS Appl Mater Interfaces; 2019 Jul; 11(26):23482-23494. PubMed ID: 31179681 [TBL] [Abstract][Full Text] [Related]
15. Electrochemical Synthesis of Nanostructured Ordered Intermetallic Materials under Ambient Conditions. Gong T; Rudman KK; Guo B; Hall AS Acc Chem Res; 2023 Jun; 56(12):1373-1383. PubMed ID: 37288939 [TBL] [Abstract][Full Text] [Related]
16. Achieving Highly Durable Random Alloy Nanocatalysts through Intermetallic Cores. Gamler JTL; Leonardi A; Ashberry HM; Daanen NN; Losovyj Y; Unocic RR; Engel M; Skrabalak SE ACS Nano; 2019 Apr; 13(4):4008-4017. PubMed ID: 30957486 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of 4H/fcc Noble Multimetallic Nanoribbons for Electrocatalytic Hydrogen Evolution Reaction. Fan Z; Luo Z; Huang X; Li B; Chen Y; Wang J; Hu Y; Zhang H J Am Chem Soc; 2016 Feb; 138(4):1414-9. PubMed ID: 26752521 [TBL] [Abstract][Full Text] [Related]