These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

556 related articles for article (PubMed ID: 33170638)

  • 1. Dynamic Core-Shell and Alloy Structures of Multimetallic Nanomaterials and Their Catalytic Synergies.
    Wu ZP; Shan S; Zang SQ; Zhong CJ
    Acc Chem Res; 2020 Dec; 53(12):2913-2924. PubMed ID: 33170638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Building Durable Multimetallic Electrocatalysts from Intermetallic Seeds.
    Bueno SLA; Ashberry HM; Shafei I; Skrabalak SE
    Acc Chem Res; 2021 Apr; 54(7):1662-1672. PubMed ID: 33377763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements.
    Gao W; Hood ZD; Chi M
    Acc Chem Res; 2017 Apr; 50(4):787-795. PubMed ID: 28207240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanostructured catalysts in fuel cells.
    Zhong CJ; Luo J; Fang B; Wanjala BN; Njoki PN; Loukrakpam R; Yin J
    Nanotechnology; 2010 Feb; 21(6):062001. PubMed ID: 20065536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon Shell on Active Nanocatalyst for Stable Electrocatalysis.
    Yoo JM; Shin H; Chung DY; Sung YE
    Acc Chem Res; 2022 May; 55(9):1278-1289. PubMed ID: 35436084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epitaxial Growth of Multimetallic Pd@PtM (M = Ni, Rh, Ru) Core-Shell Nanoplates Realized by in Situ-Produced CO from Interfacial Catalytic Reactions.
    Yan Y; Shan H; Li G; Xiao F; Jiang Y; Yan Y; Jin C; Zhang H; Wu J; Yang D
    Nano Lett; 2016 Dec; 16(12):7999-8004. PubMed ID: 27960487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring Strategies toward Synthetic Precision Control within Core-Shell Nanowires.
    Salvatore KL; Wong SS
    Acc Chem Res; 2021 Jun; 54(11):2565-2578. PubMed ID: 33989501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alloying-realloying enabled high durability for Pt-Pd-3d-transition metal nanoparticle fuel cell catalysts.
    Wu ZP; Caracciolo DT; Maswadeh Y; Wen J; Kong Z; Shan S; Vargas JA; Yan S; Hopkins E; Park K; Sharma A; Ren Y; Petkov V; Wang L; Zhong CJ
    Nat Commun; 2021 Feb; 12(1):859. PubMed ID: 33558516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Principles and Methods for the Rational Design of Core-Shell Nanoparticle Catalysts with Ultralow Noble Metal Loadings.
    Hunt ST; Román-Leshkov Y
    Acc Chem Res; 2018 May; 51(5):1054-1062. PubMed ID: 29510023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noble Metal Based Alloy Nanoframes: Syntheses and Applications in Fuel Cells.
    Nosheen F; Anwar T; Siddique A; Hussain N
    Front Chem; 2019; 7():456. PubMed ID: 31334215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled Dealloying of Alloy Nanoparticles toward Optimization of Electrocatalysis on Spongy Metallic Nanoframes.
    Li GG; Villarreal E; Zhang Q; Zheng T; Zhu JJ; Wang H
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):23920-31. PubMed ID: 27557567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of Ultrathin Pt-Based Multimetallic Nanostructures for Efficient Oxygen Reduction Electrocatalysis.
    Lai J; Guo S
    Small; 2017 Dec; 13(48):. PubMed ID: 29116672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tweaking the Interplay among Galvanic Exchange, Oxidative Etching, and Seed-Mediated Deposition toward Architectural Control of Multimetallic Nanoelectrocatalysts.
    Li GG; Wang Z; Blom DA; Wang H
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23482-23494. PubMed ID: 31179681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Core-shell nanostructured catalysts.
    Zhang Q; Lee I; Joo JB; Zaera F; Yin Y
    Acc Chem Res; 2013 Aug; 46(8):1816-24. PubMed ID: 23268644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical Synthesis of Nanostructured Ordered Intermetallic Materials under Ambient Conditions.
    Gong T; Rudman KK; Guo B; Hall AS
    Acc Chem Res; 2023 Jun; 56(12):1373-1383. PubMed ID: 37288939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Achieving Highly Durable Random Alloy Nanocatalysts through Intermetallic Cores.
    Gamler JTL; Leonardi A; Ashberry HM; Daanen NN; Losovyj Y; Unocic RR; Engel M; Skrabalak SE
    ACS Nano; 2019 Apr; 13(4):4008-4017. PubMed ID: 30957486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of 4H/fcc Noble Multimetallic Nanoribbons for Electrocatalytic Hydrogen Evolution Reaction.
    Fan Z; Luo Z; Huang X; Li B; Chen Y; Wang J; Hu Y; Zhang H
    J Am Chem Soc; 2016 Feb; 138(4):1414-9. PubMed ID: 26752521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Core-Shell Nanostructure-Enhanced Raman Spectroscopy for Surface Catalysis.
    Zhang H; Duan S; Radjenovic PM; Tian ZQ; Li JF
    Acc Chem Res; 2020 Apr; 53(4):729-739. PubMed ID: 32031367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable thermodynamic stability of Au-CuPt core-shell trimetallic nanoparticles by controlling the alloy composition: insights from atomistic simulations.
    Huang R; Shao GF; Wen YH; Sun SG
    Phys Chem Chem Phys; 2014 Nov; 16(41):22754-61. PubMed ID: 25234428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasmall (<2 nm) Au@Pt Nanostructures: Tuning the Surface Electronic States for Electrocatalysis.
    Germano LD; Marangoni VS; Mogili NVV; Seixas L; Maroneze CM
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5661-5667. PubMed ID: 30694046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.