These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33170648)

  • 1. Red-Emitting Carbon Nanodot-Based Wide-Range Responsive Nanothermometer for Intracellular Temperature Sensing.
    Xu Y; Yang Y; Lin S; Xiao L
    Anal Chem; 2020 Dec; 92(23):15632-15638. PubMed ID: 33170648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ratiometric Nanothermometer Based on Rhodamine Dye-Incorporated F127-Melamine-Formaldehyde Polymer Nanoparticle: Preparation, Characterization, Wide-Range Temperature Sensing, and Precise Intracellular Thermometry.
    Wu Y; Liu J; Ma J; Liu Y; Wang Y; Wu D
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14396-405. PubMed ID: 27197838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon Dot Nanothermometry: Intracellular Photoluminescence Lifetime Thermal Sensing.
    Kalytchuk S; Poláková K; Wang Y; Froning JP; Cepe K; Rogach AL; Zbořil R
    ACS Nano; 2017 Feb; 11(2):1432-1442. PubMed ID: 28125202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon Dots as New Generation Materials for Nanothermometer: Review.
    Mohammed LJ; Omer KM
    Nanoscale Res Lett; 2020 Sep; 15(1):182. PubMed ID: 32960340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface state-controlled C-dot/C-dot based dual-emission fluorescent nanothermometers for intra-cellular thermometry.
    Wang C; Hu T; Thomas T; Song S; Wen Z; Wang C; Song Q; Yang M
    Nanoscale; 2018 Nov; 10(46):21809-21817. PubMed ID: 30457150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature sensing using fluorescent nanothermometers.
    Vetrone F; Naccache R; Zamarrón A; Juarranz de la Fuente A; Sanz-Rodríguez F; Martinez Maestro L; Martín Rodriguez E; Jaque D; García Solé J; Capobianco JA
    ACS Nano; 2010 Jun; 4(6):3254-8. PubMed ID: 20441184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Green Synthesis of Red-Emitting Carbon Nanodots as a Novel "Turn-on" Nanothermometer in Living Cells.
    Wang C; Jiang K; Wu Q; Wu J; Zhang C
    Chemistry; 2016 Oct; 22(41):14475-9. PubMed ID: 27553910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanothermometry: From Microscopy to Thermal Treatments.
    Zhou H; Sharma M; Berezin O; Zuckerman D; Berezin MY
    Chemphyschem; 2016 Jan; 17(1):27-36. PubMed ID: 26443335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly efficient ratiometric nanothermometers based on colloidal carbon quantum dots.
    Han Y; Liu Y; Zhao H; Vomiero A; Li R
    J Mater Chem B; 2021 May; 9(20):4111-4119. PubMed ID: 34037068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Sensitive and Reliable Organic Fluorescent Nanothermometer for Noninvasive Temperature Sensing.
    Xue K; Wang C; Wang J; Lv S; Hao B; Zhu C; Tang BZ
    J Am Chem Soc; 2021 Sep; 143(35):14147-14157. PubMed ID: 34288685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescent nanothermometers for intracellular thermal sensing.
    Jaque D; Rosal BD; Rodríguez EM; Maestro LM; Haro-González P; Solé JG
    Nanomedicine (Lond); 2014 May; 9(7):1047-62. PubMed ID: 24978463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances and challenges for fluorescence nanothermometry.
    Zhou J; Del Rosal B; Jaque D; Uchiyama S; Jin D
    Nat Methods; 2020 Oct; 17(10):967-980. PubMed ID: 32989319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ratiometric Nanothermometer Based on a Radical Excimer for In Vivo Sensing.
    Blasi D; Gonzalez-Pato N; Rodriguez Rodriguez X; Diez-Zabala I; Srinivasan SY; Camarero N; Esquivias O; Roldán M; Guasch J; Laromaine A; Gorostiza P; Veciana J; Ratera I
    Small; 2023 Aug; 19(32):e2207806. PubMed ID: 37060223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly efficient red-emitting carbon dots as a "turn-on" temperature probe in living cells.
    Wang Q; Tang Z; Li L; Guo J; Jin L; Lu J; Huang P; Zhang S; Jiao L
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 280():121538. PubMed ID: 35752035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleic acid based fluorescent nanothermometers.
    Ebrahimi S; Akhlaghi Y; Kompany-Zareh M; Rinnan A
    ACS Nano; 2014 Oct; 8(10):10372-82. PubMed ID: 25265370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Joining time-resolved thermometry and magnetic-induced heating in a single nanoparticle unveils intriguing thermal properties.
    Piñol R; Brites CD; Bustamante R; Martínez A; Silva NJ; Murillo JL; Cases R; Carrey J; Estepa C; Sosa C; Palacio F; Carlos LD; Millán A
    ACS Nano; 2015 Mar; 9(3):3134-42. PubMed ID: 25693033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold nanoclusters as a near-infrared fluorometric nanothermometer for living cells.
    Zhang H; Han W; Cao X; Gao T; Jia R; Liu M; Zeng W
    Mikrochim Acta; 2019 May; 186(6):353. PubMed ID: 31098674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scallop-Inspired DNA Nanomachine: A Ratiometric Nanothermometer for Intracellular Temperature Sensing.
    Xie N; Huang J; Yang X; He X; Liu J; Huang J; Fang H; Wang K
    Anal Chem; 2017 Nov; 89(22):12115-12122. PubMed ID: 29065680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-Dependent Luminescence of Nd
    Wetzl C; Renero-Lecuna C; Cardo L; Liz-Marzán LM; Prato M
    ACS Appl Mater Interfaces; 2024 Jul; 16(27):35484-35493. PubMed ID: 38934218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ratiometric Fluorescent Polymeric Thermometer for Thermogenesis Investigation in Living Cells.
    Qiao J; Hwang YH; Chen CF; Qi L; Dong P; Mu XY; Kim DP
    Anal Chem; 2015 Oct; 87(20):10535-41. PubMed ID: 26393404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.