These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 33170666)
1. Low-Carbon Urban Water Systems: Opportunities beyond Water and Wastewater Utilities? Lam KL; van der Hoek JP Environ Sci Technol; 2020 Dec; 54(23):14854-14861. PubMed ID: 33170666 [TBL] [Abstract][Full Text] [Related]
2. City-scale analysis of water-related energy identifies more cost-effective solutions. Lam KL; Kenway SJ; Lant PA Water Res; 2017 Feb; 109():287-298. PubMed ID: 27914259 [TBL] [Abstract][Full Text] [Related]
3. Opportunities and challenges of tackling Scope 3 "Indirect" emissions from residential hot water. Kenway SJ; Pamminger F; Yan G; Hall R; Lam KL; Skinner R; Olsson G; Satur P; Allan J Water Res X; 2023 Dec; 21():100192. PubMed ID: 37693826 [TBL] [Abstract][Full Text] [Related]
4. A comprehensive carbon footprint analysis of different wastewater treatment plant configurations. Wu Z; Duan H; Li K; Ye L Environ Res; 2022 Nov; 214(Pt 2):113818. PubMed ID: 35843274 [TBL] [Abstract][Full Text] [Related]
5. Save water to save carbon and money: developing abatement costs for expanded greenhouse gas reduction portfolios. Stokes JR; Hendrickson TP; Horvath A Environ Sci Technol; 2014 Dec; 48(23):13583-91. PubMed ID: 25369123 [TBL] [Abstract][Full Text] [Related]
6. Options to reduce greenhouse gas emissions during wastewater treatment for agricultural use. Fine P; Hadas E Sci Total Environ; 2012 Feb; 416():289-99. PubMed ID: 22209373 [TBL] [Abstract][Full Text] [Related]
7. The evaluation of greenhouse gas emissions from sewage treatment with urbanization: Understanding the opportunities and challenges for climate change mitigation in China's low-carbon pilot city, Shenzhen. Xian C; Gong C; Lu F; Wu H; Ouyang Z Sci Total Environ; 2023 Jan; 855():158629. PubMed ID: 36087675 [TBL] [Abstract][Full Text] [Related]
8. Dynamic load shifting for the abatement of GHG emissions, power demand, energy use, and costs in metropolitan hybrid wastewater treatment systems. Reifsnyder S; Cecconi F; Rosso D Water Res; 2021 Jul; 200():117224. PubMed ID: 34029871 [TBL] [Abstract][Full Text] [Related]
9. Low-Carbon Watershed Management: Potential of Greenhouse Gas Reductions from Wastewater Treatment in Rural Vietnam. Nguyen LH; Mohan G; Jian P; Takemoto K; Fukushi K ScientificWorldJournal; 2016; 2016():6523217. PubMed ID: 27699202 [TBL] [Abstract][Full Text] [Related]
10. Quantifying urban wastewater treatment sector's greenhouse gas emissions using a hybrid life cycle analysis method - An application on Shenzhen city in China. Liao X; Tian Y; Gan Y; Ji J Sci Total Environ; 2020 Nov; 745():141176. PubMed ID: 32738699 [TBL] [Abstract][Full Text] [Related]
11. A regional assessment of the cost and effectiveness of mitigation measures for reducing nutrient losses to water and greenhouse gas emissions to air from pastoral farms. Vibart R; Vogeler I; Dennis S; Kaye-Blake W; Monaghan R; Burggraaf V; Beautrais J; Mackay A J Environ Manage; 2015 Jun; 156():276-89. PubMed ID: 25900091 [TBL] [Abstract][Full Text] [Related]
12. [Study on greenhouse gas emissions from urban waste disposal system: a case study in Xiamen]. Yu Y; Cui SH; Lin JY; Li F Huan Jing Ke Xue; 2012 Sep; 33(9):3288-94. PubMed ID: 23243894 [TBL] [Abstract][Full Text] [Related]
13. Dynamic metabolism modelling of urban water services--demonstrating effectiveness as a decision-support tool for Oslo, Norway. Venkatesh G; Sægrov S; Brattebø H Water Res; 2014 Sep; 61():19-33. PubMed ID: 24880242 [TBL] [Abstract][Full Text] [Related]
14. Multi-objective optimization of energy and greenhouse gas emissions in water pumping and treatment. Cardenes I; Siddiqi A; Naeini MM; Hall JW Water Sci Technol; 2020 Dec; 82(12):2745-2760. PubMed ID: 33341767 [TBL] [Abstract][Full Text] [Related]
15. Recovery of Clean Water and Ammonia from Domestic Wastewater: Impacts on Embodied Energy and Greenhouse Gas Emissions. Shin C; Szczuka A; Liu MJ; Mendoza L; Jiang R; Tilmans SH; Tarpeh WA; Mitch WA; Criddle CS Environ Sci Technol; 2022 Jun; 56(12):8712-8721. PubMed ID: 35656915 [TBL] [Abstract][Full Text] [Related]
16. CO2 abatement costs of greenhouse gas (GHG) mitigation by different biogas conversion pathways. Rehl T; Müller J J Environ Manage; 2013 Jan; 114():13-25. PubMed ID: 23201601 [TBL] [Abstract][Full Text] [Related]
17. Life-Cycle Energy Use and Greenhouse Gas Emissions of a Building-Scale Wastewater Treatment and Nonpotable Reuse System. Hendrickson TP; Nguyen MT; Sukardi M; Miot A; Horvath A; Nelson KL Environ Sci Technol; 2015 Sep; 49(17):10303-11. PubMed ID: 26230383 [TBL] [Abstract][Full Text] [Related]
18. Assessing Location and Scale of Urban Nonpotable Water Reuse Systems for Life-Cycle Energy Consumption and Greenhouse Gas Emissions. Kavvada O; Horvath A; Stokes-Draut JR; Hendrickson TP; Eisenstein WA; Nelson KL Environ Sci Technol; 2016 Dec; 50(24):13184-13194. PubMed ID: 27993062 [TBL] [Abstract][Full Text] [Related]
19. Wastewater treatment process impact on energy savings and greenhouse gas emissions. Mamais D; Noutsopoulos C; Dimopoulou A; Stasinakis A; Lekkas TD Water Sci Technol; 2015; 71(2):303-8. PubMed ID: 25633956 [TBL] [Abstract][Full Text] [Related]
20. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation). Bogner J; Pipatti R; Hashimoto S; Diaz C; Mareckova K; Diaz L; Kjeldsen P; Monni S; Faaij A; Gao Q; Zhang T; Ahmed MA; Sutamihardja RT; Gregory R; Waste Manag Res; 2008 Feb; 26(1):11-32. PubMed ID: 18338699 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]