These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33170782)

  • 1. PALLAS: Penalized mAximum LikeLihood and pArticle Swarms for Inference of Gene Regulatory Networks From Time Series Data.
    Tan Y; Neto FBL; Neto UB
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(3):1807-1816. PubMed ID: 33170782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inference of gene networks from gene expression time series using recurrent neural networks and sparse MAP estimation.
    Chen CK
    J Bioinform Comput Biol; 2018 Aug; 16(4):1850009. PubMed ID: 30051742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LogBTF: gene regulatory network inference using Boolean threshold network model from single-cell gene expression data.
    Li L; Sun L; Chen G; Wong CW; Ching WK; Liu ZP
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37079737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SAILoR: Structure-Aware Inference of Logic Rules.
    Pušnik Ž; Mraz M; Zimic N; Moškon M
    PLoS One; 2024; 19(6):e0304102. PubMed ID: 38861487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BoolFilter: an R package for estimation and identification of partially-observed Boolean dynamical systems.
    Mcclenny LD; Imani M; Braga-Neto UM
    BMC Bioinformatics; 2017 Nov; 18(1):519. PubMed ID: 29178844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A sparse and decomposed particle swarm optimization for inferring gene regulatory networks based on fuzzy cognitive maps.
    Liu L; Liu J
    J Bioinform Comput Biol; 2019 Aug; 17(4):1950023. PubMed ID: 31617458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An algebra-based method for inferring gene regulatory networks.
    Vera-Licona P; Jarrah A; Garcia-Puente LD; McGee J; Laubenbacher R
    BMC Syst Biol; 2014 Mar; 8():37. PubMed ID: 24669835
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Wu QV; Sun W; Hsu L
    F1000Res; 2020; 9():1159. PubMed ID: 35083040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive Particle Filtering for Fault Detection in Partially-Observed Boolean Dynamical Systems.
    Bahadorinejad A; Imani M; Braga-Neto UM
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(4):1105-1114. PubMed ID: 30418915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PoLoBag: Polynomial Lasso Bagging for signed gene regulatory network inference from expression data.
    Ghosh Roy G; Geard N; Verspoor K; He S
    Bioinformatics; 2021 Jan; 36(21):5187-5193. PubMed ID: 32697830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A neuro-evolution approach to infer a Boolean network from time-series gene expressions.
    Barman S; Kwon YK
    Bioinformatics; 2020 Dec; 36(Suppl_2):i762-i769. PubMed ID: 33381823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene regulatory networks on transfer entropy (GRNTE): a novel approach to reconstruct gene regulatory interactions applied to a case study for the plant pathogen Phytophthora infestans.
    Castro JC; Valdés I; Gonzalez-García LN; Danies G; Cañas S; Winck FV; Ñústez CE; Restrepo S; Riaño-Pachón DM
    Theor Biol Med Model; 2019 Apr; 16(1):7. PubMed ID: 30961611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inference of gene regulatory networks based on nonlinear ordinary differential equations.
    Ma B; Fang M; Jiao X
    Bioinformatics; 2020 Dec; 36(19):4885-4893. PubMed ID: 31950997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATEN: And/Or tree ensemble for inferring accurate Boolean network topology and dynamics.
    Shi N; Zhu Z; Tang K; Parker D; He S
    Bioinformatics; 2020 Jan; 36(2):578-585. PubMed ID: 31368481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiscale binarization of gene expression data for reconstructing Boolean networks.
    Hopfensitz M; Mussel C; Wawra C; Maucher M; Kuhl M; Neumann H; Kestler HA
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):487-98. PubMed ID: 21464514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time lagged information theoretic approaches to the reverse engineering of gene regulatory networks.
    Chaitankar V; Ghosh P; Perkins EJ; Gong P; Zhang C
    BMC Bioinformatics; 2010 Oct; 11 Suppl 6(Suppl 6):S19. PubMed ID: 20946602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel constrained genetic algorithm-based Boolean network inference method from steady-state gene expression data.
    Trinh HC; Kwon YK
    Bioinformatics; 2021 Jul; 37(Suppl_1):i383-i391. PubMed ID: 34252959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstructing Genetic Regulatory Networks Using Two-Step Algorithms with the Differential Equation Models of Neural Networks.
    Chen CK
    Interdiscip Sci; 2018 Dec; 10(4):823-835. PubMed ID: 28748400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inference of regulatory networks through temporally sparse data.
    Alali M; Imani M
    Front Control Eng; 2022; 3():. PubMed ID: 36582942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.