These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 33171029)
21. [Adaptability of Feng JY; Ruan KJ; Su SN; Zhang XP; Wu DM; Wan LX; Zeng SC Ying Yong Sheng Tai Xue Bao; 2022 Jun; 33(6):1629-1638. PubMed ID: 35729142 [TBL] [Abstract][Full Text] [Related]
22. Yi S; Zhang X; Zhang J; Ma Z; Wang R; Wu D; Wei Z; Tan Z; Zhang B; Wang M Front Plant Sci; 2022; 13():975456. PubMed ID: 35991441 [No Abstract] [Full Text] [Related]
23. Changes in Carbohydrate Composition in Fermented Total Mixed Ration and Its Effects on Li Y; Lv J; Wang J; Zhou S; Zhang G; Wei B; Sun Y; Lan Y; Dou X; Zhang Y Front Microbiol; 2021; 12():738334. PubMed ID: 34803954 [TBL] [Abstract][Full Text] [Related]
24. Conserving purple prairie clover (Dalea purpurea Vent.) as hay and silage had little effect on the efficacy of condensed tannins in modulating ruminal fermentation in vitro. Peng K; Xu Z; Nair J; Jin L; McAllister TA; Acharya S; Wang Y J Sci Food Agric; 2021 Feb; 101(3):1247-1254. PubMed ID: 33135157 [TBL] [Abstract][Full Text] [Related]
25. Rumen fermentation, methane production, and microbial composition following Hamid MMA; Moon J; Yoo D; Kim H; Lee YK; Song J; Seo J J Anim Sci Technol; 2020 Nov; 62(6):801-811. PubMed ID: 33987561 [TBL] [Abstract][Full Text] [Related]
26. Changes in methane emission, rumen fermentation, and methanogenic community in response to silage and dry cornstalk diets. Chong L; Zhuping Z; Tongjun G; Yongming L; Hongmin D J Basic Microbiol; 2014 Jun; 54(6):521-30. PubMed ID: 23696266 [TBL] [Abstract][Full Text] [Related]
27. Evaluation of gallnut tannin and Lactobacillus plantarum as natural modifiers for alfalfa silage: Ensiling characteristics, in vitro ruminal methane production, fermentation profile and microbiota. Chen L; Bao X; Guo G; Huo W; Li Q; Xu Q; Wang C; Liu Q J Appl Microbiol; 2022 Feb; 132(2):907-918. PubMed ID: 34347910 [TBL] [Abstract][Full Text] [Related]
28. Effects on enteric methane production and bacterial and archaeal communities by the addition of cashew nut shell extract or glycerol-an in vitro evaluation. Danielsson R; Werner-Omazic A; Ramin M; Schnürer A; Griinari M; Dicksved J; Bertilsson J J Dairy Sci; 2014 Sep; 97(9):5729-41. PubMed ID: 24996274 [TBL] [Abstract][Full Text] [Related]
29. Sulfur, fresh cassava root and urea independently enhanced gas production, ruminal characteristics and in vitro degradability. Sumadong P; Cherdthong A; So S; Wanapat M BMC Vet Res; 2021 Sep; 17(1):304. PubMed ID: 34503491 [TBL] [Abstract][Full Text] [Related]
30. Inoculant effects on alfalfa silage: in vitro gas and volatile fatty acid production. Muck RE; Filya I; Contreras-Govea FE J Dairy Sci; 2007 Nov; 90(11):5115-25. PubMed ID: 17954752 [TBL] [Abstract][Full Text] [Related]
31. Different techniques to study rumen fermentation characteristics of maturing grass and grass silage. Cone JW; Van Gelder AH; Soliman IA; De Visser H; Van Vuuren AM J Dairy Sci; 1999 May; 82(5):957-66. PubMed ID: 10342234 [TBL] [Abstract][Full Text] [Related]
32. The effect of pectin, corn and wheat starch, inulin and pH on in vitro production of methane, short chain fatty acids and on the microbial community composition in rumen fluid. Poulsen M; Jensen BB; Engberg RM Anaerobe; 2012 Feb; 18(1):83-90. PubMed ID: 22193552 [TBL] [Abstract][Full Text] [Related]
33. Impacts of Mootral on Methane Production, Rumen Fermentation, and Microbial Community in an Ahmed E; Yano R; Fujimori M; Kand D; Hanada M; Nishida T; Fukuma N Front Vet Sci; 2020; 7():623817. PubMed ID: 33553288 [TBL] [Abstract][Full Text] [Related]
34. Comparative study of fermentation and methanogen community structure in the digestive tract of goats and rabbits. Abecia L; Fondevila M; Rodríguez-Romero N; Martínez G; Yáñez-Ruiz DR J Anim Physiol Anim Nutr (Berl); 2013 May; 97 Suppl 1():80-8. PubMed ID: 23639021 [TBL] [Abstract][Full Text] [Related]
35. Effects of steam explosion on lignocellulosic degradation of, and methane production from, corn stover by a co-cultured anaerobic fungus and methanogen. Shi Q; Li Y; Li Y; Cheng Y; Zhu W Bioresour Technol; 2019 Oct; 290():121796. PubMed ID: 31319215 [TBL] [Abstract][Full Text] [Related]
36. Effect of camelina oil or live yeasts (Saccharomyces cerevisiae) on ruminal methane production, rumen fermentation, and milk fatty acid composition in lactating cows fed grass silage diets. Bayat AR; Kairenius P; Stefański T; Leskinen H; Comtet-Marre S; Forano E; Chaucheyras-Durand F; Shingfield KJ J Dairy Sci; 2015 May; 98(5):3166-81. PubMed ID: 25726099 [TBL] [Abstract][Full Text] [Related]
37. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
38. Ensiling characteristics, nutrient composition, and in situ ruminal and whole tract degradability of brown midrib and leafy corn silage. Mustafa AF; Seguin P; Marois-Mainguy O; Ouellet DR Arch Anim Nutr; 2005 Oct; 59(5):353-63. PubMed ID: 16320783 [TBL] [Abstract][Full Text] [Related]
39. Effect of exogenous protease enzymes on the fermentation and nutritive value of corn silage. Young KM; Lim JM; Der Bedrosian MC; Kung L J Dairy Sci; 2012 Nov; 95(11):6687-94. PubMed ID: 22981573 [TBL] [Abstract][Full Text] [Related]
40. Adsorption of cellobiohydrolases I onto lignin fractions from dilute acid pretreated Broussonetia papyrifera. Yao L; Yang H; Yoo CG; Meng X; Li M; Pu Y; Ragauskas AJ; Sykes RW Bioresour Technol; 2017 Nov; 244(Pt 1):957-962. PubMed ID: 28847086 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]