BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 33171040)

  • 1. Mechanistic Study of Pb(II) Removal by TiO
    Zhang S; Shi Q; Chou TM; Christodoulatos C; Korfiatis GP; Meng X
    Langmuir; 2020 Nov; 36(46):13918-13927. PubMed ID: 33171040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lead immobilization by phosphate in the presence of iron oxides: Adsorption versus precipitation.
    Shi Q; Zhang S; Ge J; Wei J; Christodoulatos C; Korfiatis GP; Meng X
    Water Res; 2020 Jul; 179():115853. PubMed ID: 32388052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Insights into Phosphate-Enhanced Lead Immobilization on Goethite.
    Lian W; Yu G; Ma J; Xiong J; Niu C; Zhang R; Xie H; Weng L
    Environ Sci Technol; 2024 Jul; 58(26):11748-11759. PubMed ID: 38912726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Insights into Ternary Surface Complexation of Arsenite and Cadmium on TiO2.
    Hu S; Yan L; Chan T; Jing C
    Environ Sci Technol; 2015 May; 49(10):5973-9. PubMed ID: 25922967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of V (V) and Pb (II) by nanosized TiO
    Yin X; Meng X; Zhang Y; Zhang W; Sun H; Lessl JT; Wang N
    Ecotoxicol Environ Saf; 2018 Nov; 164():510-519. PubMed ID: 30145491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal Mechanisms of Phosphate by Lanthanum Hydroxide Nanorods: Investigations using EXAFS, ATR-FTIR, DFT, and Surface Complexation Modeling Approaches.
    Fang L; Shi Q; Nguyen J; Wu B; Wang Z; Lo IMC
    Environ Sci Technol; 2017 Nov; 51(21):12377-12384. PubMed ID: 29035555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of pH to the surface precipitation mechanisms of arsenate and cadmium on TiO
    Hu S; Lian F; Wang J
    Sci Total Environ; 2019 May; 666():956-963. PubMed ID: 30970502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pb(II) Uptake from Polluted Irrigation Water Using Anatase TiO
    Vasquez-Caballero MA; Canchanya-Huaman Y; Mayta-Armas AF; Pomalaya-Velasco J; Checca-Huaman NR; Bendezú-Roca Y; Ramos-Guivar JA
    Molecules; 2023 Jun; 28(12):. PubMed ID: 37375151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pb sorption on montmorillonite-bacteria composites: A combination study by XAFS, ITC and SCM.
    Qu C; Du H; Ma M; Chen W; Cai P; Huang Q
    Chemosphere; 2018 Jun; 200():427-436. PubMed ID: 29501033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous arsenic and fluoride removal using {201}TiO
    Yu Y; Zhou Z; Ding Z; Zuo M; Cheng J; Jing C
    J Hazard Mater; 2019 Sep; 377():267-273. PubMed ID: 31173975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption mechanism of Pb
    Rehman MU; Rehman W; Waseem M; Hussain S; Haq S; Rehman MA
    Environ Sci Pollut Res Int; 2019 Jul; 26(19):19968-19981. PubMed ID: 31093917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of Pb(II), NTA, and Pb(II)-NTA onto TiO2.
    Vohra MS; Davis AP
    J Colloid Interface Sci; 1997 Oct; 194(1):59-67. PubMed ID: 9367585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosorption mechanisms involved in immobilization of soil Pb by Bacillus subtilis DBM in a multi-metal-contaminated soil.
    Bai J; Yang X; Du R; Chen Y; Wang S; Qiu R
    J Environ Sci (China); 2014 Oct; 26(10):2056-64. PubMed ID: 25288550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption mechanisms of chromate and phosphate on hydrotalcite: A combination of macroscopic and spectroscopic studies.
    Hsu LC; Tzou YM; Chiang PN; Fu WM; Wang MK; Teah HY; Liu YT
    Environ Pollut; 2019 Apr; 247():180-187. PubMed ID: 30677662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption mechanism of arsenic on nanocrystalline titanium dioxide.
    Pena M; Meng X; Korfiatis GP; Jing C
    Environ Sci Technol; 2006 Feb; 40(4):1257-62. PubMed ID: 16572784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Removal of Pb
    He H; Zhu ZQ; Liu J; Zhu YN; Yan QM; Liu Y; Mo N; Xuan HL; Wei WY
    Huan Jing Ke Xue; 2019 Sep; 40(9):4081-4090. PubMed ID: 31854871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water decontamination via the removal of Pb (II) using a new generation of highly energetic surface nano-material: Co(+2)Mo(+6) LDH.
    Mostafa MS; Bakr AA; El Naggar AMA; Sultan EA
    J Colloid Interface Sci; 2016 Jan; 461():261-272. PubMed ID: 26402785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic Study of Lead Adsorption on Activated Carbon.
    Shi Q; Sterbinsky GE; Prigiobbe V; Meng X
    Langmuir; 2018 Nov; 34(45):13565-13573. PubMed ID: 30350696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface mole-ratio method to distinguish surface precipitation and adsorption on solid-liquid interface.
    Wei J; Meng X; Song Y; Shi Q; Wen X; Korfiatis G
    J Hazard Mater; 2020 Oct; 397():122781. PubMed ID: 32388096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competitive arsenate and phosphate adsorption on α-FeOOH, LaOOH, and nano-TiO
    Li X; Yan L; Zhong W; Kersten M; Jing C
    J Hazard Mater; 2021 Jul; 414():125512. PubMed ID: 33647621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.