BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 33171154)

  • 1. Telomeres and telomerase in risk assessment of cardiovascular diseases.
    Boniewska-Bernacka E; Pańczyszyn A; Klinger M
    Exp Cell Res; 2020 Dec; 397(2):112361. PubMed ID: 33171154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation and Effect of Telomerase and Telomeric Length in Stem Cells.
    Celtikci B; Erkmen GK; Dikmen ZG
    Curr Stem Cell Res Ther; 2021; 16(7):809-823. PubMed ID: 32321410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue formation and tissue engineering through host cell recruitment or a potential injectable cell-based biocomposite with replicative potential: Molecular mechanisms controlling cellular senescence and the involvement of controlled transient telomerase activation therapies.
    Babizhayev MA; Yegorov YE
    J Biomed Mater Res A; 2015 Dec; 103(12):3993-4023. PubMed ID: 26034007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of Cellular Aging, Tissue Function, and Cancer by p53 Downstream of Telomeres.
    Roake CM; Artandi SE
    Cold Spring Harb Perspect Med; 2017 May; 7(5):. PubMed ID: 28289249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of telomeres and telomerase in the senescence of postmitotic cells.
    Pańczyszyn A; Boniewska-Bernacka E; Goc A
    DNA Repair (Amst); 2020 Nov; 95():102956. PubMed ID: 32937289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opposing p53 and mTOR/AKT promote an in vivo switch from apoptosis to senescence upon telomere shortening in zebrafish.
    El Maï M; Marzullo M; de Castro IP; Ferreira MG
    Elife; 2020 May; 9():. PubMed ID: 32427102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Length-independent telomere damage drives post-mitotic cardiomyocyte senescence.
    Anderson R; Lagnado A; Maggiorani D; Walaszczyk A; Dookun E; Chapman J; Birch J; Salmonowicz H; Ogrodnik M; Jurk D; Proctor C; Correia-Melo C; Victorelli S; Fielder E; Berlinguer-Palmini R; Owens A; Greaves LC; Kolsky KL; Parini A; Douin-Echinard V; LeBrasseur NK; Arthur HM; Tual-Chalot S; Schafer MJ; Roos CM; Miller JD; Robertson N; Mann J; Adams PD; Tchkonia T; Kirkland JL; Mialet-Perez J; Richardson GD; Passos JF
    EMBO J; 2019 Mar; 38(5):. PubMed ID: 30737259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular functions of the dual-targeted catalytic subunit of telomerase, telomerase reverse transcriptase--potential role in senescence and aging.
    Ale-Agha N; Dyballa-Rukes N; Jakob S; Altschmied J; Haendeler J
    Exp Gerontol; 2014 Aug; 56():189-93. PubMed ID: 24583100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Telomerase Reverse Transcriptase and Peroxisome Proliferator-Activated Receptor γ Co-Activator-1α Cooperate to Protect Cells from DNA Damage and Mitochondrial Dysfunction in Vascular Senescence.
    Mendelsohn AR; Larrick JW
    Rejuvenation Res; 2015 Oct; 18(5):479-83. PubMed ID: 26414604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Telomerase is required for zebrafish lifespan.
    Henriques CM; Carneiro MC; Tenente IM; Jacinto A; Ferreira MG
    PLoS Genet; 2013; 9(1):e1003214. PubMed ID: 23349637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TERT regulates telomere-related senescence and apoptosis through DNA damage response in male germ cells exposed to BPDE in vitro and to B[a]P in vivo.
    Ling X; Yang W; Zou P; Zhang G; Wang Z; Zhang X; Chen H; Peng K; Han F; Liu J; Cao J; Ao L
    Environ Pollut; 2018 Apr; 235():836-849. PubMed ID: 29353801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Telomerase activity and telomere length in Daphnia.
    Schumpert C; Nelson J; Kim E; Dudycha JL; Patel RC
    PLoS One; 2015; 10(5):e0127196. PubMed ID: 25962144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Senescence and Neuroprotective Effects of Telomerase in Neurodegenerative Diseases.
    Ding X; Liu X; Wang F; Wang F; Geng X
    Rejuvenation Res; 2020 Apr; 23(2):150-158. PubMed ID: 31170886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The roles of senescence and telomere shortening in cardiovascular disease.
    Fyhrquist F; Saijonmaa O; Strandberg T
    Nat Rev Cardiol; 2013 May; 10(5):274-83. PubMed ID: 23478256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PRDX1 and MTH1 cooperate to prevent ROS-mediated inhibition of telomerase.
    Ahmed W; Lingner J
    Genes Dev; 2018 May; 32(9-10):658-669. PubMed ID: 29773556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of U-STELA for Accurate Measurement of Extremely Short Telomeres.
    Serakinci N; Cagsin H; Mavis M
    Methods Mol Biol; 2019; 2045():217-224. PubMed ID: 29542055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Aspects of Senescence and Organismal Ageing-DNA Damage Response, Telomeres, Inflammation and Chromatin.
    Sławińska N; Krupa R
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33435578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploiting the telomere machinery to put the brakes on inflamm-aging.
    Bonafè M; Sabbatinelli J; Olivieri F
    Ageing Res Rev; 2020 May; 59():101027. PubMed ID: 32068123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA damage in telomeres and mitochondria during cellular senescence: is there a connection?
    Passos JF; Saretzki G; von Zglinicki T
    Nucleic Acids Res; 2007; 35(22):7505-13. PubMed ID: 17986462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early Loss of Telomerase Action in Yeast Creates a Dependence on the DNA Damage Response Adaptor Proteins.
    Jay KA; Smith DL; Blackburn EH
    Mol Cell Biol; 2016 Jul; 36(14):1908-19. PubMed ID: 27161319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.