These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 33171203)
1. Temperature/end point monitoring and modelling of a batch freeze-drying process using an infrared camera. Harguindeguy M; Fissore D Eur J Pharm Biopharm; 2021 Jan; 158():113-122. PubMed ID: 33171203 [TBL] [Abstract][Full Text] [Related]
2. On the Use of Infrared Thermography for Monitoring a Vial Freeze-Drying Process. Lietta E; Colucci D; Distefano G; Fissore D J Pharm Sci; 2019 Jan; 108(1):391-398. PubMed ID: 30077699 [TBL] [Abstract][Full Text] [Related]
3. Thermal Imaging as a Noncontact Inline Process Analytical Tool for Product Temperature Monitoring during Continuous Freeze-Drying of Unit Doses. Van Bockstal PJ; Corver J; De Meyer L; Vervaet C; De Beer T Anal Chem; 2018 Nov; 90(22):13591-13599. PubMed ID: 30339362 [TBL] [Abstract][Full Text] [Related]
4. Use of soft sensors to monitor a pharmaceuticals freeze-drying process in vials. Bosca S; Barresi AA; Fissore D Pharm Dev Technol; 2014 Mar; 19(2):148-59. PubMed ID: 23336717 [TBL] [Abstract][Full Text] [Related]
5. Fundamentals of freeze-drying. Nail SL; Jiang S; Chongprasert S; Knopp SA Pharm Biotechnol; 2002; 14():281-360. PubMed ID: 12189727 [TBL] [Abstract][Full Text] [Related]
6. Determination of mass and heat transfer parameters during freeze-drying cycles of pharmaceutical products. Hottot A; Vessot S; Andrieu J PDA J Pharm Sci Technol; 2005; 59(2):138-53. PubMed ID: 15971546 [TBL] [Abstract][Full Text] [Related]
7. Noncontact Infrared-Mediated Heat Transfer During Continuous Freeze-Drying of Unit Doses. Van Bockstal PJ; De Meyer L; Corver J; Vervaet C; De Beer T J Pharm Sci; 2017 Jan; 106(1):71-82. PubMed ID: 27321237 [TBL] [Abstract][Full Text] [Related]
8. Protein purification process engineering. Freeze drying: A practical overview. Gatlin LA; Nail SL Bioprocess Technol; 1994; 18():317-67. PubMed ID: 7764173 [TBL] [Abstract][Full Text] [Related]
9. Process control in freeze drying: determination of the end point of sublimation drying by an electronic moisture sensor. Roy ML; Pikal MJ J Parenter Sci Technol; 1989; 43(2):60-6. PubMed ID: 2709237 [TBL] [Abstract][Full Text] [Related]
10. Moisture measurement: a new method for monitoring freeze-drying cycles. Bardat A; Biguet J; Chatenet E; Courteille F J Parenter Sci Technol; 1993; 47(6):293-9. PubMed ID: 8120734 [TBL] [Abstract][Full Text] [Related]
11. Micro Freeze-Dryer and Infrared-Based PAT: Novel Tools for Primary Drying Design Space Determination of Freeze-Drying Processes. Harguindeguy M; Fissore D Pharm Res; 2021 Apr; 38(4):707-719. PubMed ID: 33686561 [TBL] [Abstract][Full Text] [Related]
12. Infrared thermography for monitoring of freeze-drying processes: instrumental developments and preliminary results. Emteborg H; Zeleny R; Charoud-Got J; Martos G; Lüddeke J; Schellin H; Teipel K J Pharm Sci; 2014 Jul; 103(7):2088-2097. PubMed ID: 24902839 [TBL] [Abstract][Full Text] [Related]
13. Monitoring of the freezing stage in a freeze-drying process using IR thermography. Colucci D; Maniaci R; Fissore D Int J Pharm; 2019 Jul; 566():488-499. PubMed ID: 31175990 [TBL] [Abstract][Full Text] [Related]
14. Mechanistic modelling of infrared mediated energy transfer during the primary drying step of a continuous freeze-drying process. Van Bockstal PJ; Mortier ST; De Meyer L; Corver J; Vervaet C; Nopens I; De Beer T Eur J Pharm Biopharm; 2017 May; 114():11-21. PubMed ID: 28089785 [TBL] [Abstract][Full Text] [Related]
15. Process optimization and transfer of freeze-drying in nested vial systems. Ehlers S; Schroeder R; Friess W Eur J Pharm Biopharm; 2021 Feb; 159():143-150. PubMed ID: 33429009 [TBL] [Abstract][Full Text] [Related]
16. A primary drying model-based comparison of conventional batch freeze-drying to continuous spin-freeze-drying for unit doses. Leys L; Vanbillemont B; Van Bockstal PJ; Lammens J; Nuytten G; Corver J; Vervaet C; De Beer T Eur J Pharm Biopharm; 2020 Dec; 157():97-107. PubMed ID: 33053425 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of a new wireless Temperature Remote Interrogation System (TEMPRIS) to measure product temperature during freeze drying. Schneid S; Gieseler H AAPS PharmSciTech; 2008; 9(3):729-39. PubMed ID: 18561030 [TBL] [Abstract][Full Text] [Related]
18. On the use of a micro freeze-dryer for the investigation of the primary drying stage of a freeze-drying process. Fissore D; Gallo G; Ruggiero AE; Thompson TN Eur J Pharm Biopharm; 2019 Aug; 141():121-129. PubMed ID: 31125719 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of manometric temperature measurement as a method of monitoring product temperature during lyophilization. Milton N; Pikal MJ; Roy ML; Nail SL PDA J Pharm Sci Technol; 1997; 51(1):7-16. PubMed ID: 9099059 [TBL] [Abstract][Full Text] [Related]