These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 33171224)
1. Hazard assessment using an in-silico toxicity assessment of the transformation products of boscalid, pyraclostrobin, fenbuconazole and glyphosate generated by exposure to an advanced oxidative process. Skanes B; Warriner K; Prosser RS Toxicol In Vitro; 2021 Feb; 70():105049. PubMed ID: 33171224 [TBL] [Abstract][Full Text] [Related]
2. Dissipation Residue Behaviors and Dietary Risk Assessment of Boscalid and Pyraclostrobin in Watermelon by HPLC-MS/MS. Lv L; Su Y; Dong B; Lu W; Hu J; Liu X Molecules; 2022 Jul; 27(14):. PubMed ID: 35889283 [TBL] [Abstract][Full Text] [Related]
3. Dissipation behavior, residue distribution and dietary risk assessment of field-incurred boscalid and pyraclostrobin in grape and grape field soil via MWCNTs-based QuEChERS using an RRLC-QqQ-MS/MS technique. Chen X; He S; Gao Y; Ma Y; Hu J; Liu X Food Chem; 2019 Feb; 274():291-297. PubMed ID: 30372941 [TBL] [Abstract][Full Text] [Related]
4. Assessment of Mitochondrial Function in the AmE-711 Honey Bee Cell Line: Boscalid and Pyraclostrobin Effects. Martinović-Weigelt D; Dang MA; Mord A; Goblirsch MJ Environ Toxicol Chem; 2024 May; 43(5):976-987. PubMed ID: 38488751 [TBL] [Abstract][Full Text] [Related]
5. Isomerization of fenbuconazole under UV-visible irradiation - chemical and toxicological approaches. Lassalle Y; Nicol E; Genty C; Bourcier S; Bouchonnet S Rapid Commun Mass Spectrom; 2015 Jul; 29(14):1335-42. PubMed ID: 26405795 [TBL] [Abstract][Full Text] [Related]
6. UV-visible degradation of boscalid--structural characterization of photoproducts and potential toxicity using in silico tests. Lassalle Y; Kinani A; Rifai A; Souissi Y; Clavaguera C; Bourcier S; Jaber F; Bouchonnet S Rapid Commun Mass Spectrom; 2014 May; 28(10):1153-63. PubMed ID: 24711278 [TBL] [Abstract][Full Text] [Related]
7. Micronuclei, nucleoplasmic bridges, and nuclear buds induced in human lymphocytes by the fungicide signum and its active ingredients (boscalid and pyraclostrobin). Çayır A; Coskun M; Coskun M Environ Toxicol; 2014 May; 29(7):723-32. PubMed ID: 22730168 [TBL] [Abstract][Full Text] [Related]
8. Assessment of boscalid and pyraclostrobin disappearance and behavior following application of effective microorganisms on apples. Podbielska M; Szpyrka E; Piechowicz B; Sadło S; Sudoł M J Environ Sci Health B; 2018; 53(10):652-660. PubMed ID: 30024824 [TBL] [Abstract][Full Text] [Related]
9. Stability and fitness of pyraclostrobin- and boscalid-resistant phenotypes in field isolates of Botrytis cinerea from apple. Kim YK; Xiao CL Phytopathology; 2011 Nov; 101(11):1385-91. PubMed ID: 21692646 [TBL] [Abstract][Full Text] [Related]
10. The influence of effective microorganisms (EM) and yeast on the degradation of strobilurins and carboxamides in leafy vegetables monitored by LC-MS/MS and health risk assessment. Wołejko E; Łozowicka B; Kaczyński P; Jankowska M; Piekut J Environ Monit Assess; 2016 Jan; 188(1):64. PubMed ID: 26718945 [TBL] [Abstract][Full Text] [Related]
11. Toxicological effects of fungicide mixtures on the amphipod Austrochiltonia subtenuis. Vu HT; Keough MJ; Long SM; Pettigrove VJ Environ Toxicol Chem; 2017 Oct; 36(10):2651-2659. PubMed ID: 28370236 [TBL] [Abstract][Full Text] [Related]
12. Fate, residues and dietary risk assessment of the fungicides epoxiconazole and pyraclostrobin in wheat in twelve different regions, China. Zhao Z; Sun R; Su Y; Hu J; Liu X Ecotoxicol Environ Saf; 2021 Jan; 207():111236. PubMed ID: 32911182 [TBL] [Abstract][Full Text] [Related]
13. Field cross-fostering and in vitro rearing demonstrate negative effects of both larval and adult exposure to a widely used fungicide in honey bees (Apis mellifera). Fisher A; DeGrandi-Hoffman G; Smith BH; Ozturk C; Kaftanoglu O; Fewell JH; Harrison JF Ecotoxicol Environ Saf; 2021 Jul; 217():112251. PubMed ID: 33905983 [TBL] [Abstract][Full Text] [Related]
14. Analysis of Pesticide Residues by QuEChERS Method and LC-MS/MS for a New Extrapolation of Maximum Residue Levels in Persimmon Minor Crop. Sandín-España P; Mateo-Miranda M; López-Goti C; Seris-Barrallo E; Alonso-Prados JL Molecules; 2022 Feb; 27(5):. PubMed ID: 35268618 [TBL] [Abstract][Full Text] [Related]
15. Characterization of boscalid-induced oxidative stress and neurodevelopmental toxicity in zebrafish embryos. Wang H; Meng Z; Liu F; Zhou L; Su M; Meng Y; Zhang S; Liao X; Cao Z; Lu H Chemosphere; 2020 Jan; 238():124753. PubMed ID: 31545217 [TBL] [Abstract][Full Text] [Related]
16. Behavior of pyrimethanil, pyraclostrobin, boscalid, cypermethrin and chlorpyrifos residues on raspberry fruit and leaves of Laszka variety. Sadło S; Szpyrka E; Stawarczyk M; Piechowicz B J Environ Sci Health B; 2014; 49(3):159-68. PubMed ID: 24380616 [TBL] [Abstract][Full Text] [Related]
17. Minor crops for export: a case study of boscalid, pyraclostrobin, lufenuron and lambda-cyhalothrin residue levels on green beans and spring onions in Egypt. Hanafi A; Garau VL; Caboni P; Sarais G; Cabras P J Environ Sci Health B; 2010 Aug; 45(6):493-500. PubMed ID: 20574869 [TBL] [Abstract][Full Text] [Related]
18. Assessments of Algal Toxicity and PBT Behaviour of Pesticides with No Eco-toxicological Data: Predictive Ability of QSA/(T)R Models. Gökçe S; Saçan MT Mol Inform; 2019 Aug; 38(8-9):e1800137. PubMed ID: 30969472 [TBL] [Abstract][Full Text] [Related]
19. A case study on toxicological aspects of the pest and disease control in the production of the high-quality raspberry (Rubus idaeus L.). Sadło S; Szpyrka E; Piechowicz B; Grodzicki P J Environ Sci Health B; 2015; 50(1):8-14. PubMed ID: 25421623 [TBL] [Abstract][Full Text] [Related]
20. Photolysis and photo-induced toxicity of pyraclostrobin to Vibrio fischeri: Pathway and toxic mechanism. Fan L; Huang Y; Huang T; Zhao K; Zhang YN; Li C; Zhao YH Aquat Toxicol; 2020 Mar; 220():105417. PubMed ID: 31958710 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]