These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 33171263)

  • 1. Pharmaceutical nanoparticle isolation using CO
    Verma V; Ryan KM; Padrela L
    Int J Pharm; 2021 Jan; 592():120032. PubMed ID: 33171263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoparticles in the pharmaceutical industry and the use of supercritical fluid technologies for nanoparticle production.
    Sheth P; Sandhu H; Singhal D; Malick W; Shah N; Kislalioglu MS
    Curr Drug Deliv; 2012 May; 9(3):269-84. PubMed ID: 22283656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of the zeta potential of montmorillonite to achieve high active pharmaceutical ingredient nanoparticle loading and stabilization with optimum dissolution properties.
    Kumar A; Hodnett BK; Hudson S; Davern P
    Colloids Surf B Biointerfaces; 2020 Sep; 193():111120. PubMed ID: 32505995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supercritical fluid (SCF)-assisted fabrication of carrier-free drugs: An eco-friendly welcome to active pharmaceutical ingredients (APIs).
    Kankala RK; Xu PY; Chen BQ; Wang SB; Chen AZ
    Adv Drug Deliv Rev; 2021 Sep; 176():113846. PubMed ID: 34197896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals - A comprehensive review.
    Padrela L; Rodrigues MA; Duarte A; Dias AMA; Braga MEM; de Sousa HC
    Adv Drug Deliv Rev; 2018 Jun; 131():22-78. PubMed ID: 30026127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production and isolation of pharmaceutical drug nanoparticles.
    Verma V; Ryan KM; Padrela L
    Int J Pharm; 2021 Jun; 603():120708. PubMed ID: 33992712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spray-freeze-drying production of thermally sensitive polymeric nanoparticle aggregates for inhaled drug delivery: effect of freeze-drying adjuvants.
    Cheow WS; Ng ML; Kho K; Hadinoto K
    Int J Pharm; 2011 Feb; 404(1-2):289-300. PubMed ID: 21093560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing various techniques to produce micro/nanoparticles for enhancing the dissolution of celecoxib containing PVP.
    Homayouni A; Sadeghi F; Varshosaz J; Garekani HA; Nokhodchi A
    Eur J Pharm Biopharm; 2014 Sep; 88(1):261-74. PubMed ID: 24952357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spray drying of API nanosuspensions: Importance of drying temperature, type and content of matrix former and particle size for successful formulation and process development.
    Czyz S; Wewers M; Finke JH; Kwade A; van Eerdenbrugh B; Juhnke M; Bunjes H
    Eur J Pharm Biopharm; 2020 Jul; 152():63-71. PubMed ID: 32376369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spray granulation: importance of process parameters on in vitro and in vivo behavior of dried nanosuspensions.
    Figueroa CE; Bose S
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):1046-55. PubMed ID: 23916460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supercritical fluid particle design for poorly water-soluble drugs (review).
    Sun Y
    Curr Pharm Des; 2014; 20(3):349-68. PubMed ID: 23651403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanotechnology versus other techniques in improving drug dissolution.
    Kwok PC; Chan HK
    Curr Pharm Des; 2014; 20(3):474-82. PubMed ID: 23651399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different BCS Class II Drug-Gelucire Solid Dispersions Prepared by Spray Congealing: Evaluation of Solid State Properties and In Vitro Performances.
    Bertoni S; Albertini B; Passerini N
    Pharmaceutics; 2020 Jun; 12(6):. PubMed ID: 32545643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of submicron drug particles via spray drying from organic solvents.
    Dobrowolski A; Strob R; Dräger-Gillessen JF; Pieloth D; Schaldach G; Wiggers H; Thommes M
    Int J Pharm; 2019 Aug; 567():118501. PubMed ID: 31288055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Producing Amorphous Solid Dispersions via Co-Precipitation and Spray Drying: Impact to Physicochemical and Biopharmaceutical Properties.
    Mann AKP; Schenck L; Koynov A; Rumondor ACF; Jin X; Marota M; Dalton C
    J Pharm Sci; 2018 Jan; 107(1):183-191. PubMed ID: 28711592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of the supercritical fluidized bed process for sirolimus coating and drug release.
    Chen T; Liu L; Zhang L; Lu T; Matos RL; Jiang C; Lin Y; Yuan T; Ma Z; He H; Zhuang X; Li Q
    Int J Pharm; 2020 Nov; 589():119809. PubMed ID: 32896606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carrier particle mediated stabilization and isolation of valsartan nanoparticles.
    Kumar A; Davern P; Hodnett BK; Hudson SP
    Colloids Surf B Biointerfaces; 2019 Mar; 175():554-563. PubMed ID: 30579056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formulation of ionic liquid APIs via spray drying processes to enable conversion into single and two-phase solid forms.
    Tsolaki E; Stocker MW; Healy AM; Ferguson S
    Int J Pharm; 2021 Jun; 603():120669. PubMed ID: 33989753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A critical review on the particle generation and other applications of rapid expansion of supercritical solution.
    Kumar R; Thakur AK; Banerjee N; Chaudhari P
    Int J Pharm; 2021 Oct; 608():121089. PubMed ID: 34530097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spray Drying as a Reliable Route to Produce Metastable Carbamazepine Form IV.
    Halliwell RA; Bhardwaj RM; Brown CJ; Briggs NEB; Dunn J; Robertson J; Nordon A; Florence AJ
    J Pharm Sci; 2017 Jul; 106(7):1874-1880. PubMed ID: 28431966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.