These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 33171302)
1. Gene capture by transposable elements leads to epigenetic conflict in maize. Muyle A; Seymour D; Darzentas N; Primetis E; Gaut BS; Bousios A Mol Plant; 2021 Feb; 14(2):237-252. PubMed ID: 33171302 [TBL] [Abstract][Full Text] [Related]
2. A role for palindromic structures in the cis-region of maize Sirevirus LTRs in transposable element evolution and host epigenetic response. Bousios A; Diez CM; Takuno S; Bystry V; Darzentas N; Gaut BS Genome Res; 2016 Feb; 26(2):226-37. PubMed ID: 26631490 [TBL] [Abstract][Full Text] [Related]
3. Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Hollister JD; Gaut BS Genome Res; 2009 Aug; 19(8):1419-28. PubMed ID: 19478138 [TBL] [Abstract][Full Text] [Related]
4. Maize RNA PolIV affects the expression of genes with nearby TE insertions and has a genome-wide repressive impact on transcription. Forestan C; Farinati S; Aiese Cigliano R; Lunardon A; Sanseverino W; Varotto S BMC Plant Biol; 2017 Oct; 17(1):161. PubMed ID: 29025411 [TBL] [Abstract][Full Text] [Related]
5. Monitoring the interplay between transposable element families and DNA methylation in maize. Noshay JM; Anderson SN; Zhou P; Ji L; Ricci W; Lu Z; Stitzer MC; Crisp PA; Hirsch CN; Zhang X; Schmitz RJ; Springer NM PLoS Genet; 2019 Sep; 15(9):e1008291. PubMed ID: 31498837 [TBL] [Abstract][Full Text] [Related]
6. The Role of Small RNA-Based Epigenetic Silencing for Purifying Selection on Transposable Elements in Capsella grandiflora. Horvath R; Slotte T Genome Biol Evol; 2017 Oct; 9(10):2911-2920. PubMed ID: 29036316 [TBL] [Abstract][Full Text] [Related]
7. Genetic and epigenetic variation in transposable element expression responses to abiotic stress in maize. Liang Z; Anderson SN; Noshay JM; Crisp PA; Enders TA; Springer NM Plant Physiol; 2021 May; 186(1):420-433. PubMed ID: 33591319 [TBL] [Abstract][Full Text] [Related]
8. Silencing of Burgess D; Li H; Zhao M; Kim SY; Lisch D Genetics; 2020 Jun; 215(2):379-391. PubMed ID: 32229532 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide high-resolution mapping of DNA methylation identifies epigenetic variation across embryo and endosperm in Maize (Zea may). Wang P; Xia H; Zhang Y; Zhao S; Zhao C; Hou L; Li C; Li A; Ma C; Wang X BMC Genomics; 2015 Jan; 16(1):21. PubMed ID: 25612809 [TBL] [Abstract][Full Text] [Related]
10. Assessing the regulatory potential of transposable elements using chromatin accessibility profiles of maize transposons. Noshay JM; Marand AP; Anderson SN; Zhou P; Mejia Guerra MK; Lu Z; O'Connor CH; Crisp PA; Hirsch CN; Schmitz RJ; Springer NM Genetics; 2021 Mar; 217(1):1-13. PubMed ID: 33683350 [TBL] [Abstract][Full Text] [Related]
11. Constant conflict between Gypsy LTR retrotransposons and CHH methylation within a stress-adapted mangrove genome. Wang Y; Liang W; Tang T New Phytol; 2018 Nov; 220(3):922-935. PubMed ID: 29762876 [TBL] [Abstract][Full Text] [Related]
12. Transposon variants and their effects on gene expression in Arabidopsis. Wang X; Weigel D; Smith LM PLoS Genet; 2013; 9(2):e1003255. PubMed ID: 23408902 [TBL] [Abstract][Full Text] [Related]
13. Modeling Interactions between Transposable Elements and the Plant Epigenetic Response: A Surprising Reliance on Element Retention. Roessler K; Bousios A; Meca E; Gaut BS Genome Biol Evol; 2018 Mar; 10(3):803-815. PubMed ID: 29608716 [TBL] [Abstract][Full Text] [Related]
14. Three groups of transposable elements with contrasting copy number dynamics and host responses in the maize (Zea mays ssp. mays) genome. Diez CM; Meca E; Tenaillon MI; Gaut BS PLoS Genet; 2014 Apr; 10(4):e1004298. PubMed ID: 24743518 [TBL] [Abstract][Full Text] [Related]
15. Elevated transcription of transposable elements is accompanied by het-siRNA-driven de novo DNA methylation in grapevine embryogenic callus. Lizamore D; Bicknell R; Winefield C BMC Genomics; 2021 Sep; 22(1):676. PubMed ID: 34544372 [TBL] [Abstract][Full Text] [Related]
16. How transposable elements are recognized and epigenetically silenced in plants? Liu B; Zhao M Curr Opin Plant Biol; 2023 Oct; 75():102428. PubMed ID: 37481986 [TBL] [Abstract][Full Text] [Related]
17. Role of transposon-derived small RNAs in the interplay between genomes and parasitic DNA in rice. Nosaka M; Itoh J; Nagato Y; Ono A; Ishiwata A; Sato Y PLoS Genet; 2012 Sep; 8(9):e1002953. PubMed ID: 23028360 [TBL] [Abstract][Full Text] [Related]
18. A "mille-feuille" of silencing: epigenetic control of transposable elements. Rigal M; Mathieu O Biochim Biophys Acta; 2011 Aug; 1809(8):452-8. PubMed ID: 21514406 [TBL] [Abstract][Full Text] [Related]
19. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Slotkin RK; Vaughn M; Borges F; Tanurdzić M; Becker JD; Feijó JA; Martienssen RA Cell; 2009 Feb; 136(3):461-72. PubMed ID: 19203581 [TBL] [Abstract][Full Text] [Related]
20. Mechanistic and evolutionary questions about epigenetic conflicts between transposable elements and their plant hosts. Bousios A; Gaut BS Curr Opin Plant Biol; 2016 Apr; 30():123-33. PubMed ID: 26950253 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]