These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33171737)

  • 1. Determination of the Optimum Removal Efficiency of Fine Particulate Matter Using Activated Carbon Fiber (ACF).
    Kim MK; Jang Y; Park D
    Int J Environ Res Public Health; 2020 Nov; 17(21):. PubMed ID: 33171737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of particulate matter emitted from a subway tunnel using magnetic filters.
    Son YS; Dinh TV; Chung SG; Lee JH; Kim JC
    Environ Sci Technol; 2014; 48(5):2870-6. PubMed ID: 24499385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of traditional and advanced technologies for the removal of particulate matter in subway systems.
    Park JH; Son YS; Kim KH
    Indoor Air; 2019 Mar; 29(2):177-191. PubMed ID: 30586211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implementation of IoT-Based Air Quality Monitoring System for Investigating Particulate Matter (PM
    Jo JH; Jo B; Kim JH; Choi I
    Int J Environ Res Public Health; 2020 Jul; 17(15):. PubMed ID: 32731501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of air pollution of Shanghai subway stations in ventilation seasons in terms of PM
    Guo E; Shen H; He L; Zhang J
    Toxicol Ind Health; 2017 Jul; 33(7):588-600. PubMed ID: 28678677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal efficiency of particulate matters at different underlying surfaces in Beijing.
    Liu J; Mo L; Zhu L; Yang Y; Liu J; Qiu D; Zhang Z; Liu J
    Environ Sci Pollut Res Int; 2016 Jan; 23(1):408-17. PubMed ID: 26308922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sources and Characteristics of Particulate Matter in Subway Tunnels in Seoul, Korea.
    Lee Y; Lee YC; Kim T; Choi JS; Park D
    Int J Environ Res Public Health; 2018 Nov; 15(11):. PubMed ID: 30424555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal variations of fine and coarse particulate matter sources in Jeddah, Saudi Arabia.
    Lim CC; Thurston GD; Shamy M; Alghamdi M; Khoder M; Mohorjy AM; Alkhalaf AK; Brocato J; Chen LC; Costa M
    J Air Waste Manag Assoc; 2018 Feb; 68(2):123-138. PubMed ID: 28635552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatio-temporal variability of particulate matter in the key part of Gansu Province, Western China.
    Guan Q; Cai A; Wang F; Yang L; Xu C; Liu Z
    Environ Pollut; 2017 Nov; 230():189-198. PubMed ID: 28651090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multivariate study for characterizing particulate matter (PM(10), PM(2.5), and PM(1)) in Seoul metropolitan subway stations, Korea.
    Kwon SB; Jeong W; Park D; Kim KT; Cho KH
    J Hazard Mater; 2015 Oct; 297():295-303. PubMed ID: 26010475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of meteorological parameters on fine and coarse particulate matter mass concentration in a coal-mining area in Zonguldak, Turkey.
    Tecer LH; Süren P; Alagha O; Karaca F; Tuncel G
    J Air Waste Manag Assoc; 2008 Apr; 58(4):543-52. PubMed ID: 18422041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New comprehensive approach for airborne asbestos characterisation and monitoring.
    Klán M; Pokorná P; Havlíček D; Vik O; Racek M; Plocek J; Hovorka J
    Environ Sci Pollut Res Int; 2018 Oct; 25(30):30488-30496. PubMed ID: 30168111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fifteen-year trends in carbon species and PM
    Kim Y; Yi SM; Heo J
    Chemosphere; 2020 Dec; 261():127750. PubMed ID: 32712379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exposure to airborne particulate matter in the subway system.
    Martins V; Moreno T; Minguillón MC; Amato F; de Miguel E; Capdevila M; Querol X
    Sci Total Environ; 2015 Apr; 511():711-22. PubMed ID: 25616190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of coal-carrying trains on particulate matter concentrations in South Delta, British Columbia, Canada.
    Akaoka K; McKendry I; Saxton J; Cottle PW
    Environ Pollut; 2017 Apr; 223():376-383. PubMed ID: 28126388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of activated carbon fiber filters for pressure drop, submicrometer particulate collection, and mercury capture.
    Hayashi T; Lee TG; Hazelwood M; Hedrick E; Biswas P
    J Air Waste Manag Assoc; 2000 Jun; 50(6):922-9. PubMed ID: 10902384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of activated carbon fiber adsorption capacity for several common organic vapors: applications for respiratory protection.
    Summers M; Oh J; Lungu CT
    J Air Waste Manag Assoc; 2022 Jun; 72(6):570-580. PubMed ID: 34569912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size-dependent characteristics of diurnal particle concentration variation in an underground subway tunnel.
    Woo SH; Kim JB; Bae GN; Hwang MS; Tahk GH; Yoon HH; Kwon SB; Park D; Yook SJ
    Environ Monit Assess; 2018 Nov; 190(12):740. PubMed ID: 30465289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The empirical correlations between PM2.5, PM10 and AOD in the Beijing metropolitan region and the PM2.5, PM10 distributions retrieved by MODIS.
    Kong L; Xin J; Zhang W; Wang Y
    Environ Pollut; 2016 Sep; 216():350-360. PubMed ID: 27294786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of surface functionalized activated carbon fiber for control of NO and particulate matter.
    Rathore RS; Srivastava DK; Agarwal AK; Verma N
    J Hazard Mater; 2010 Jan; 173(1-3):211-22. PubMed ID: 19733969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.