BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 33171761)

  • 1. Patterned Piezoelectric Scaffolds for Osteogenic Differentiation.
    Marques-Almeida T; Cardoso VF; Gama M; Lanceros-Mendez S; Ribeiro C
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33171761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of titanium dioxide nanowire incorporated poly(vinylidene fluoride-trifluoroethylene) scaffolds for bone tissue engineering applications.
    Augustine A; Augustine R; Hasan A; Raghuveeran V; Rouxel D; Kalarikkal N; Thomas S
    J Mater Sci Mater Med; 2019 Aug; 30(8):96. PubMed ID: 31414231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of myoblast differentiation by electroactive scaffold morphology and biochemical stimuli.
    Ribeiro S; Marques-Almeida T; Cardoso VF; Ribeiro C; Lanceros-Méndez S
    Biomater Adv; 2023 Aug; 151():213438. PubMed ID: 37121084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(Vinylidene Fluoride-Trifluorethylene)/barium titanate membrane promotes de novo bone formation and may modulate gene expression in osteoporotic rat model.
    Scalize PH; Bombonato-Prado KF; de Sousa LG; Rosa AL; Beloti MM; Semprini M; Gimenes R; de Almeida AL; de Oliveira FS; Hallak Regalo SC; Siessere S
    J Mater Sci Mater Med; 2016 Dec; 27(12):180. PubMed ID: 27770393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly(vinylidene-trifluoroethylene)/barium titanate composite for in vivo support of bone formation.
    Lopes HB; Santos Tde S; de Oliveira FS; Freitas GP; de Almeida AL; Gimenes R; Rosa AL; Beloti MM
    J Biomater Appl; 2014 Jul; 29(1):104-12. PubMed ID: 24319054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning Myoblast and Preosteoblast Cell Adhesion Site, Orientation, and Elongation through Electroactive Micropatterned Scaffolds.
    Marques-Almeida T; Cardoso VF; Ribeiro S; Gama FM; Ribeiro C; Lanceros-Mendez S
    ACS Appl Bio Mater; 2019 Apr; 2(4):1591-1602. PubMed ID: 35026893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PVDF and P(VDF-TrFE) Electrospun Scaffolds for Nerve Graft Engineering: A Comparative Study on Piezoelectric and Structural Properties, and In Vitro Biocompatibility.
    Gryshkov O; Al Halabi F; Kuhn AI; Leal-Marin S; Freund LJ; Förthmann M; Meier N; Barker SA; Haastert-Talini K; Glasmacher B
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The osteogenic response to chirality-patterned surface potential distribution of CFO/P(VDF-TrFE) membranes.
    Zhang J; He X; Zhou Z; Chen X; Shao J; Huang D; Dong L; Lin J; Wang H; Weng W; Cheng K
    Biomater Sci; 2022 Aug; 10(16):4576-4587. PubMed ID: 35791864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro biocompatibility of a novel membrane of the composite poly(vinylidene-trifluoroethylene)/barium titanate.
    Beloti MM; de Oliveira PT; Gimenes R; Zaghete MA; Bertolini MJ; Rosa AL
    J Biomed Mater Res A; 2006 Nov; 79(2):282-8. PubMed ID: 16817204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response of human alveolar bone-derived cells to a novel poly(vinylidene fluoride-trifluoroethylene)/barium titanate membrane.
    Teixeira LN; Crippa GE; Gimenes R; Zaghete MA; de Oliveira PT; Rosa AL; Beloti MM
    J Mater Sci Mater Med; 2011 Jan; 22(1):151-8. PubMed ID: 21107658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro biocompatibility of poly(vinylidene fluoride-trifluoroethylene)/barium titanate composite using cultures of human periodontal ligament fibroblasts and keratinocytes.
    Teixeira LN; Crippa GE; Trabuco AC; Gimenes R; Zaghete MA; Palioto DB; de Oliveira PT; Rosa AL; Beloti MM
    Acta Biomater; 2010 Mar; 6(3):979-89. PubMed ID: 19703597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroactive poly(vinylidene fluoride-trifluoroethylene)/graphene composites for cardiac tissue engineering applications.
    Meira RM; Ribeiro S; Irastorza I; Silván U; Lanceros-Mendez S; Ribeiro C
    J Colloid Interface Sci; 2024 Jun; 663():73-81. PubMed ID: 38394819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Force induced piezoelectric effect of polyvinylidene fluoride and polyvinylidene fluoride-co-trifluoroethylene nanofibrous scaffolds.
    Al Halabi F; Gryshkov O; Kuhn AI; Kapralova VM; Glasmacher B
    Int J Artif Organs; 2018 Nov; 41(11):811-822. PubMed ID: 29976127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospun ZnO/Poly(Vinylidene Fluoride-Trifluoroethylene) Scaffolds for Lung Tissue Engineering.
    Azimi B; Sorayani Bafqi MS; Fusco A; Ricci C; Gallone G; Bagherzadeh R; Donnarumma G; Uddin MJ; Latifi M; Lazzeri A; Danti S
    Tissue Eng Part A; 2020 Dec; 26(23-24):1312-1331. PubMed ID: 32842903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro osteogenic differentiation potential of the human induced pluripotent stem cells augments when grown on Graphene oxide-modified nanofibers.
    Saburi E; Islami M; Hosseinzadeh S; Moghadam AS; Mansour RN; Azadian E; Joneidi Z; Nikpoor AR; Ghadiani MH; Khodaii Z; Ardeshirylajimi A
    Gene; 2019 May; 696():72-79. PubMed ID: 30772518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proving the suitability of magnetoelectric stimuli for tissue engineering applications.
    Ribeiro C; Correia V; Martins P; Gama FM; Lanceros-Mendez S
    Colloids Surf B Biointerfaces; 2016 Apr; 140():430-436. PubMed ID: 26797659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Electroactive Phases of Poly(vinylidene Fluoride) Fibers for Tissue Engineering Applications.
    Zaszczyńska A; Gradys A; Ziemiecka A; Szewczyk PK; Tymkiewicz R; Lewandowska-Szumieł M; Stachewicz U; Sajkiewicz PŁ
    Int J Mol Sci; 2024 May; 25(9):. PubMed ID: 38732199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide-incorporated 3D porous alginate scaffolds with enhanced osteogenesis for bone tissue engineering.
    Luo Z; Yang Y; Deng Y; Sun Y; Yang H; Wei S
    Colloids Surf B Biointerfaces; 2016 Jul; 143():243-251. PubMed ID: 27022863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Participation of MicroRNA-34a and RANKL on bone repair induced by poly(vinylidene-trifluoroethylene)/barium titanate membrane.
    Lopes HB; Ferraz EP; Almeida AL; Florio P; Gimenes R; Rosa AL; Beloti MM
    J Biomater Sci Polym Ed; 2016 Sep; 27(13):1369-79. PubMed ID: 27312544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel chitosan/agarose/hydroxyapatite nanocomposite scaffold for bone tissue engineering applications: comprehensive evaluation of biocompatibility and osteoinductivity with the use of osteoblasts and mesenchymal stem cells.
    Kazimierczak P; Benko A; Nocun M; Przekora A
    Int J Nanomedicine; 2019; 14():6615-6630. PubMed ID: 31695360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.