These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 33171778)

  • 1. Additive Manufacturing of Cementitious Materials by Selective Paste Intrusion: Numerical Modeling of the Flow Using a 2D Axisymmetric Phase Field Method.
    Pierre A; Weger D; Perrot A; Lowke D
    Materials (Basel); 2020 Nov; 13(21):. PubMed ID: 33171778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Penetration of Cement Pastes into Particle-Beds: A Comparison of Penetration Models.
    Weger D; Pierre A; Perrot A; Kränkel T; Lowke D; Gehlen C
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33466872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particle-Bed Binding by Selective Paste Intrusion-Strength and Durability of Printed Fine-Grain Concrete Members.
    Weger D; Gehlen C
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33513813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Slump Flow of Cementitious Pastes: Simulation vs. Experiments.
    Thiedeitz M; Kränkel T; Kartal D; Timothy JJ
    Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38276471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rheological Properties of Cement Paste with Nano-Fe
    Jiao D; Lesage K; Yardimci MY; El Cheikh K; Shi C; De Schutter G
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33207744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of TiO
    de Matos P; Zat T; Corazza K; Fensterseifer E; Sakata R; Mohamad G; Rodríguez E
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Logistic Model of Phase Transformation of Hardening Concrete.
    Ślusarek J; Nowoświat A; Olechowska M
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orbital Overlapping through Induction Bonding Overcomes the Intrinsic Delamination of 3D-Printed Cementitious Binders.
    Hosseini E; Zakertabrizi M; Habibnejad Korayem A; Zaker Z; Shahsavari R
    ACS Nano; 2020 Aug; 14(8):9466-9477. PubMed ID: 32491835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On Phase Identification of Hardened Cement Pastes by Combined Nanoindentation and Mercury Intrusion Method.
    Ying J; Zhang X; Jiang Z; Huang Y
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34204331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uniformly Dispersed and Re-Agglomerated Graphene Oxide-Based Cement Pastes: A Comparison of Rheological Properties, Mechanical Properties and Microstructure.
    Long WJ; Li HD; Fang CL; Xing F
    Nanomaterials (Basel); 2018 Jan; 8(1):. PubMed ID: 29315216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical Characterization of MWCNT-Reinforced Cement Paste: Experimental and Multiscale Computational Investigation.
    Kavvadias IE; Tsongas K; Bantilas KE; Falara MG; Thomoglou AK; Gkountakou FI; Elenas A
    Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37570083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-High Early Strength Cementitious Grout Suitable for Additive Manufacturing Applications Fabricated by Using Graphene Oxide and Viscosity Modifying Agents.
    Mohammed A; Al-Saadi NTK
    Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33287399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical Modelling of the Effect of Filler/Matrix Interfacial Strength on the Fracture of Cementitious Composites.
    Ouyang X; Pan Z; Qian Z; Ma Y; Ye G; van Breugel K
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30082635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upscaling Cement Paste Microstructure to Obtain the Fracture, Shear, and Elastic Concrete Mechanical LDPM Parameters.
    Sherzer G; Gao P; Schlangen E; Ye G; Gal E
    Materials (Basel); 2017 Feb; 10(3):. PubMed ID: 28772605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extrudability analysis of drug loaded pastes for 3D printing of modified release tablets.
    Zidan A; Alayoubi A; Coburn J; Asfari S; Ghammraoui B; Cruz CN; Ashraf M
    Int J Pharm; 2019 Jan; 554():292-301. PubMed ID: 30439491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical Validation of a Population Balance Model Describing Cement Paste Rheology.
    Gallo-Molina JP; Lesage K; Nopens I
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32164211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DoE Approach to Setting Input Parameters for Digital 3D Printing of Concrete for Coarse Aggregates up to 8 mm.
    Vespalec A; Podroužek J; Koutný D
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effect of Sulfonated Graphene on the Rheological Properties of Cement Paste.
    Wu JM; Jing GJ; Lu XL; Lei TY; Wang SX; Cheng X; Ye ZM
    J Nanosci Nanotechnol; 2020 Dec; 20(12):7495-7505. PubMed ID: 32711619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of mechanistic models to identify critical formulation and process variables of pastes for 3D printing of modified release tablets.
    Zidan A; Alayoubi A; Asfari S; Coburn J; Ghammraoui B; Aqueel S; Cruz CN; Ashraf M
    Int J Pharm; 2019 Jan; 555():109-123. PubMed ID: 30453019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large Particle 3D Concrete Printing-A Green and Viable Solution.
    Mai I; Brohmann L; Freund N; Gantner S; Kloft H; Lowke D; Hack N
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.