These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 33171895)

  • 41. Potential effects of biodegradable single-use items in the sea: Polylactic acid (PLA) and solitary ascidians.
    Anderson G; Shenkar N
    Environ Pollut; 2021 Jan; 268(Pt A):115364. PubMed ID: 33152630
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bioplastics from waste biomass of marine and poultry industries.
    Arif A; Azeem F; Rasul I; Siddique MH; Zubair M; Muneer F; Zaheer W; Nadeem H
    J Biosci; 2023; 48():. PubMed ID: 37021675
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Post-consumer plastic packaging waste from online food delivery services in South Korea.
    Jang Y; Nam Kim K; Woo J
    Waste Manag; 2023 Feb; 156():177-186. PubMed ID: 36481706
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recent advances in the sustainable design and applications of biodegradable polymers.
    Rai P; Mehrotra S; Priya S; Gnansounou E; Sharma SK
    Bioresour Technol; 2021 Apr; 325():124739. PubMed ID: 33509643
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Polylactic Acid/Lignin Composites: A Review.
    Shi K; Liu G; Sun H; Weng Y
    Polymers (Basel); 2023 Jun; 15(13):. PubMed ID: 37447453
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Greenhouse gas emissions from the treatment of household plastic containers and packaging: replacement with biomass-based materials.
    Yano J; Hirai Y; Sakai S; Tsubota J
    Waste Manag Res; 2014 Apr; 32(4):304-16. PubMed ID: 24633553
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An overview of the recent developments in polylactide (PLA) research.
    Madhavan Nampoothiri K; Nair NR; John RP
    Bioresour Technol; 2010 Nov; 101(22):8493-501. PubMed ID: 20630747
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Environmental performance of plastic food packaging: Life cycle assessment extended with costs on marine ecosystem services.
    Boone L; Préat N; Nhu TT; Fiordelisi F; Guillard V; Blanckaert M; Dewulf J
    Sci Total Environ; 2023 Oct; 894():164781. PubMed ID: 37321496
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Trends and challenges in the development of bio-based barrier coating materials for paper/cardboard food packaging; a review.
    Mujtaba M; Lipponen J; Ojanen M; Puttonen S; Vaittinen H
    Sci Total Environ; 2022 Dec; 851(Pt 2):158328. PubMed ID: 36037892
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microalgae-based bioplastics: Future solution towards mitigation of plastic wastes.
    Roy Chong JW; Tan X; Khoo KS; Ng HS; Jonglertjunya W; Yew GY; Show PL
    Environ Res; 2022 Apr; 206():112620. PubMed ID: 34968431
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Consumer attitudes and concerns with bioplastics use: An international study.
    Filho WL; Barbir J; Abubakar IR; Paço A; Stasiskiene Z; Hornbogen M; Christin Fendt MT; Voronova V; Klõga M
    PLoS One; 2022; 17(4):e0266918. PubMed ID: 35476711
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Environmental impact of bioplastic use: A review.
    Atiwesh G; Mikhael A; Parrish CC; Banoub J; Le TT
    Heliyon; 2021 Sep; 7(9):e07918. PubMed ID: 34522811
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biodegradability of PBAT/PLA coated paper and bioplastic bags under anaerobic digestion.
    Peng W; Nie R; Lü F; Zhang H; He P
    Waste Manag; 2024 Feb; 174():218-228. PubMed ID: 38064993
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Advances in research and development of bioplastic for food packaging.
    Jariyasakoolroj P; Leelaphiwat P; Harnkarnsujarit N
    J Sci Food Agric; 2020 Nov; 100(14):5032-5045. PubMed ID: 30450696
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microalgae as Contributors to Produce Biopolymers.
    Madadi R; Maljaee H; Serafim LS; Ventura SPM
    Mar Drugs; 2021 Aug; 19(8):. PubMed ID: 34436305
    [TBL] [Abstract][Full Text] [Related]  

  • 56. From trash to treasure: review on upcycling of fruit and vegetable wastes into starch based bioplastics.
    Das S; Kalyani MI
    Prep Biochem Biotechnol; 2023; 53(7):713-727. PubMed ID: 36565171
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sustainable utilization of fruit and vegetable waste bioresources for bioplastics production.
    Gong L; Passari AK; Yin C; Kumar Thakur V; Newbold J; Clark W; Jiang Y; Kumar S; Gupta VK
    Crit Rev Biotechnol; 2024 Mar; 44(2):236-254. PubMed ID: 36642423
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Organic waste-to-bioplastics: Conversion with eco-friendly technologies and approaches for sustainable environment.
    Ali Z; Abdullah M; Yasin MT; Amanat K; Ahmad K; Ahmed I; Qaisrani MM; Khan J
    Environ Res; 2024 Mar; 244():117949. PubMed ID: 38109961
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nanostructured Materials Utilized in Biopolymer-based Plastics for Food Packaging Applications.
    Ghanbarzadeh B; Oleyaei SA; Almasi H
    Crit Rev Food Sci Nutr; 2015; 55(12):1699-723. PubMed ID: 24798951
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biopolymer-Based Sustainable Food Packaging Materials: Challenges, Solutions, and Applications.
    Perera KY; Jaiswal AK; Jaiswal S
    Foods; 2023 Jun; 12(12):. PubMed ID: 37372632
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.