These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 33172098)

  • 1. Interfacing DNA with Gold Nanoparticles for Heavy Metal Detection.
    He Z; Yin H; Chang CC; Wang G; Liang X
    Biosensors (Basel); 2020 Nov; 10(11):. PubMed ID: 33172098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual channel sensor for detection and discrimination of heavy metal ions based on colorimetric and fluorescence response of the AuNPs-DNA conjugates.
    Tan L; Chen Z; Zhao Y; Wei X; Li Y; Zhang C; Wei X; Hu X
    Biosens Bioelectron; 2016 Nov; 85():414-421. PubMed ID: 27208473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Capillary electrophoretic determination of heavy-metal ions using 11-mercaptoundecanoic acid and 6-mercapto-1-hexanol co-functionalized gold nanoparticle as colorimetric probe.
    Bi J; Li T; Ren H; Ling R; Wu Z; Qin W
    J Chromatogr A; 2019 Jun; 1594():208-215. PubMed ID: 30772060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colorimetric detection of L-histidine based on the target-triggered self-cleavage of swing-structured DNA duplex-induced aggregation of gold nanoparticles.
    Jiao Y; Liu Q; Qiang H; Chen Z
    Mikrochim Acta; 2018 Sep; 185(10):452. PubMed ID: 30209628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colorimetric sensor array based on gold nanoparticles and amino acids for identification of toxic metal ions in water.
    Sener G; Uzun L; Denizli A
    ACS Appl Mater Interfaces; 2014; 6(21):18395-400. PubMed ID: 25330256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smart DNA-gold nanoparticle hybrid hydrogel film based portable, cost-effective and storable biosensing system for the colorimetric detection of lead (II) and uranyl ions.
    Liu C; Gou S; Bi Y; Gao Q; Sun J; Hu S; Guo W
    Biosens Bioelectron; 2022 Aug; 210():114290. PubMed ID: 35489275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colorimetric detection of single base-pair mismatches based on the interactions of PNA and PNA/DNA complexes with unmodified gold nanoparticles.
    Xing S; Xu X; Fu P; Xu M; Gao T; Zhang X; Zhao C
    Colloids Surf B Biointerfaces; 2019 Sep; 181():333-340. PubMed ID: 31154144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA Base Pair Stacking Assembly of Anisotropic Nanoparticles for Biosensing and Ordered Assembly.
    He Z; Wang G; Liang X; Takarada T; Maeda M
    Anal Sci; 2021 Mar; 37(3):415-419. PubMed ID: 33071270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of mercury ions (II) based on non-cross-linking aggregation of double-stranded DNA modified gold nanoparticles by resonance Rayleigh scattering method.
    Gao ZF; Song WW; Luo HQ; Li NB
    Biosens Bioelectron; 2015 Mar; 65():360-5. PubMed ID: 25461182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Simple and Green Route for Room-Temperature Synthesis of Gold Nanoparticles and Selective Colorimetric Detection of Cysteine.
    Bagci PO; Wang YC; Gunasekaran S
    J Food Sci; 2015 Sep; 80(9):N2071-8. PubMed ID: 26239641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A test strip platform based on DNA-functionalized gold nanoparticles for on-site detection of mercury (II) ions.
    Guo Z; Duan J; Yang F; Li M; Hao T; Wang S; Wei D
    Talanta; 2012 May; 93():49-54. PubMed ID: 22483875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous direct detection of Shiga-toxin producing Escherichia coli (STEC) strains by optical biosensing with oligonucleotide-functionalized gold nanoparticles.
    Quintela IA; de los Reyes BG; Lin CS; Wu VC
    Nanoscale; 2015 Feb; 7(6):2417-26. PubMed ID: 25563863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colorimetric detection of Hg
    Wang R; Zhang H; Zhang X; Li Z; Yang Y; Zheng R; Qu Y
    Biotechnol Lett; 2020 Sep; 42(9):1691-1697. PubMed ID: 32297012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct colorimetric biosensing of mercury(II) ion based on aggregation of poly-(γ-glutamic acid)-functionalized gold nanoparticles.
    Guan H; Liu X; Wang W; Liang J
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():527-32. PubMed ID: 24291429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold Nanoparticle-Based Colorimetric Sensors: Properties and Application in Detection of Heavy Metals and Biological Molecules.
    Kusuma SAF; Harmonis JA; Pratiwi R; Hasanah AN
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37837002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lysine-promoted colorimetric response of gold nanoparticles: a simple assay for ultrasensitive mercury(II) detection.
    Sener G; Uzun L; Denizli A
    Anal Chem; 2014 Jan; 86(1):514-20. PubMed ID: 24364626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A colorimetric aptasensor based on gold nanoparticles for detection of microbial toxins: an alternative approach to conventional methods.
    Geleta GS
    Anal Bioanal Chem; 2022 Oct; 414(24):7103-7122. PubMed ID: 35902394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Mn2+ on oligonucleotide-gold nanoparticle hybrids for colorimetric sensing of Hg2+: improving colorimetric sensitivity and accelerating color change.
    Yu CJ; Cheng TL; Tseng WL
    Biosens Bioelectron; 2009 Sep; 25(1):204-10. PubMed ID: 19631521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA-Gold Nanozyme-Modified Paper Device for Enhanced Colorimetric Detection of Mercury Ions.
    Mao MX; Zheng R; Peng CF; Wei XL
    Biosensors (Basel); 2020 Dec; 10(12):. PubMed ID: 33353224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances in Colorimetric Sensors Based on Gold Nanoparticles for Pathogen Detection.
    Yang J; Wang X; Sun Y; Chen B; Hu F; Guo C; Yang T
    Biosensors (Basel); 2022 Dec; 13(1):. PubMed ID: 36671864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.