These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 33172158)
1. Machine Learning Approaches for Activity Recognition and/or Activity Prediction in Locomotion Assistive Devices-A Systematic Review. Labarrière F; Thomas E; Calistri L; Optasanu V; Gueugnon M; Ornetti P; Laroche D Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33172158 [TBL] [Abstract][Full Text] [Related]
2. A Review on Locomotion Mode Recognition and Prediction When Using Active Orthoses and Exoskeletons. Moreira L; Figueiredo J; Cerqueira J; Santos CP Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236204 [TBL] [Abstract][Full Text] [Related]
3. Locomotion Mode Transition Prediction Based on Gait-Event Identification Using Wearable Sensors and Multilayer Perceptrons. Su B; Liu YX; Gutierrez-Farewik EM Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833549 [TBL] [Abstract][Full Text] [Related]
4. Comparison of machine learning and deep learning-based methods for locomotion mode recognition using a single inertial measurement unit. Vu HTT; Cao HL; Dong D; Verstraten T; Geeroms J; Vanderborght B Front Neurorobot; 2022; 16():923164. PubMed ID: 36524219 [TBL] [Abstract][Full Text] [Related]
5. A Machine Learning Strategy for Locomotion Classification and Parameter Estimation Using Fusion of Wearable Sensors. Camargo J; Flanagan W; Csomay-Shanklin N; Kanwar B; Young A IEEE Trans Biomed Eng; 2021 May; 68(5):1569-1578. PubMed ID: 33710951 [TBL] [Abstract][Full Text] [Related]
6. A comprehensive, open-source dataset of lower limb biomechanics in multiple conditions of stairs, ramps, and level-ground ambulation and transitions. Camargo J; Ramanathan A; Flanagan W; Young A J Biomech; 2021 Apr; 119():110320. PubMed ID: 33677231 [TBL] [Abstract][Full Text] [Related]
7. Design of Decision Tree Structure with Improved BPNN Nodes for High-Accuracy Locomotion Mode Recognition Using a Single IMU. Han Y; Liu C; Yan L; Ren L Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33450967 [TBL] [Abstract][Full Text] [Related]
8. State-of-the-Art Review on Wearable Obstacle Detection Systems Developed for Assistive Technologies and Footwear. Joseph AM; Kian A; Begg R Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36905003 [TBL] [Abstract][Full Text] [Related]
10. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477 [TBL] [Abstract][Full Text] [Related]
11. Human Locomotion Classification for Different Terrains Using Machine Learning Techniques. Negi S; Negi PCBS; Sharma S; Sharma N Crit Rev Biomed Eng; 2020; 48(4):199-209. PubMed ID: 33463957 [TBL] [Abstract][Full Text] [Related]
12. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
13. An Improved Extreme Learning Machine (ELM) Algorithm for Intent Recognition of Transfemoral Amputees With Powered Knee Prosthesis. Zhang Y; Wang X; Xiu H; Chen W; Ma Y; Wei G; Ren L; Ren L IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1757-1766. PubMed ID: 38683719 [TBL] [Abstract][Full Text] [Related]
14. Beyond the black stump: rapid reviews of health research issues affecting regional, rural and remote Australia. Osborne SR; Alston LV; Bolton KA; Whelan J; Reeve E; Wong Shee A; Browne J; Walker T; Versace VL; Allender S; Nichols M; Backholer K; Goodwin N; Lewis S; Dalton H; Prael G; Curtin M; Brooks R; Verdon S; Crockett J; Hodgins G; Walsh S; Lyle DM; Thompson SC; Browne LJ; Knight S; Pit SW; Jones M; Gillam MH; Leach MJ; Gonzalez-Chica DA; Muyambi K; Eshetie T; Tran K; May E; Lieschke G; Parker V; Smith A; Hayes C; Dunlop AJ; Rajappa H; White R; Oakley P; Holliday S Med J Aust; 2020 Dec; 213 Suppl 11():S3-S32.e1. PubMed ID: 33314144 [TBL] [Abstract][Full Text] [Related]
15. Locomotion Mode Recognition Algorithm Based on Gaussian Mixture Model Using IMU Sensors. Shin D; Lee S; Hwang S Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920969 [TBL] [Abstract][Full Text] [Related]
16. An intent recognition strategy for transfemoral amputee ambulation across different locomotion modes. Young AJ; Simon A; Hargrove LJ Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1587-90. PubMed ID: 24110005 [TBL] [Abstract][Full Text] [Related]
17. Wearable Iontronic FMG for Classification of Muscular Locomotion. Zou P; Wang Y; Cai H; Peng T; Pan T; Li R; Fan Y IEEE J Biomed Health Inform; 2022 Jul; 26(7):2854-2863. PubMed ID: 35536817 [TBL] [Abstract][Full Text] [Related]
18. A CNN-Based Method for Intent Recognition Using Inertial Measurement Units and Intelligent Lower Limb Prosthesis. Su BY; Wang J; Liu SQ; Sheng M; Jiang J; Xiang K IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):1032-1042. PubMed ID: 30969928 [TBL] [Abstract][Full Text] [Related]
19. The future of Cochrane Neonatal. Soll RF; Ovelman C; McGuire W Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834 [TBL] [Abstract][Full Text] [Related]
20. Improving Walking Assistance Efficiency in Real-World Scenarios with Soft Exosuits Using Locomotion Mode Detection. Zhang X; Tricomi E; Missiroli F; Lotti N; Ma X; Masia L IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941239 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]