These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 33172255)

  • 21. Narrowband Polaritonic Thermal Emitters Driven by Waste Heat.
    Lu G; Nolen JR; Folland TG; Tadjer MJ; Walker DG; Caldwell JD
    ACS Omega; 2020 May; 5(19):10900-10908. PubMed ID: 32455210
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermophotovoltaics with spectral and angular selective doped-oxide thermal emitters.
    Sakr E; Bermel P
    Opt Express; 2017 Oct; 25(20):A880-A895. PubMed ID: 29041299
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material.
    Du K; Cai L; Luo H; Lu Y; Tian J; Qu Y; Ghosh P; Lyu Y; Cheng Z; Qiu M; Li Q
    Nanoscale; 2018 Mar; 10(9):4415-4420. PubMed ID: 29451573
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flexible Thermocamouflage Materials in Supersonic Flowfields with Selective Energy Dissipation.
    Lee N; Lim JS; Chang I; Lee D; Cho HH
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):43524-43532. PubMed ID: 34472852
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST.
    Du KK; Li Q; Lyu YB; Ding JC; Lu Y; Cheng ZY; Qiu M
    Light Sci Appl; 2017 Jan; 6(1):e16194. PubMed ID: 30167194
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor.
    Asano T; Suemitsu M; Hashimoto K; De Zoysa M; Shibahara T; Tsutsumi T; Noda S
    Sci Adv; 2016 Dec; 2(12):e1600499. PubMed ID: 28028532
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A
    Heo SY; Lee GJ; Kim DH; Kim YJ; Ishii S; Kim MS; Seok TJ; Lee BJ; Lee H; Song YM
    Sci Adv; 2020 Sep; 6(36):. PubMed ID: 32917610
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances.
    Wu C; Arju N; Kelp G; Fan JA; Dominguez J; Gonzales E; Tutuc E; Brener I; Shvets G
    Nat Commun; 2014 May; 5():3892. PubMed ID: 24861488
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Scalable spectrally selective mid-infrared meta-absorbers for advanced radiative thermal engineering.
    Liu X; Chang Q; Yan M; Wang X; Zhang H; Zhou H; Fan T
    Phys Chem Chem Phys; 2020 Jul; 22(25):13965-13974. PubMed ID: 32609110
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spectrally Selective Inorganic-Based Multilayer Emitter for Daytime Radiative Cooling.
    Chae D; Kim M; Jung PH; Son S; Seo J; Liu Y; Lee BJ; Lee H
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8073-8081. PubMed ID: 31990166
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of heating/cooling dynamics in the hysteresis loop and tunable IR emissivity of VO
    Larciprete MC; Centini M; Paoloni S; Dereshgi SA; Tang K; Wu J; Aydin K
    Opt Express; 2020 Dec; 28(26):39203-39215. PubMed ID: 33379475
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selective Emitter with Engineered Anisotropic Radiation to Minimize Dual-Band Thermal Signature for Infrared Stealth Technology.
    Park C; Kim J; Hahn JW
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):43090-43097. PubMed ID: 32862637
    [TBL] [Abstract][Full Text] [Related]  

  • 33. General deep learning framework for emissivity engineering.
    Yu S; Zhou P; Xi W; Chen Z; Deng Y; Luo X; Li W; Shiomi J; Hu R
    Light Sci Appl; 2023 Dec; 12(1):291. PubMed ID: 38052800
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanically Robust and Spectrally Selective Convection Shield for Daytime Subambient Radiative Cooling.
    Zhang J; Zhou Z; Tang H; Xing J; Quan J; Liu J; Yu J; Hu M
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14132-14140. PubMed ID: 33724770
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transparent Glass Surfaces with Silica Nanopillars for Radiative Cooling.
    Arrés Chillón J; Paulillo B; Mazumder P; Pruneri V
    ACS Appl Nano Mater; 2022 Dec; 5(12):17606-17612. PubMed ID: 36583120
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-adaptive control of infrared emissivity in a solution-processed plasmonic structure.
    Ono M; Takata M; Shirata M; Yoshihiro T; Tani T; Naya M; Saiki T
    Opt Express; 2021 Oct; 29(22):36048-36060. PubMed ID: 34809025
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Near-infrared tailored thermal emission from wafer-scale continuous-film resonators.
    Roberts AS; Chirumamilla M; Thilsing-Hansen K; Pedersen K; Bozhevolnyi SI
    Opt Express; 2015 Sep; 23(19):A1111-9. PubMed ID: 26406741
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Perfect Thermal Emission by Nanoscale Transmission Line Resonators.
    Liu B; Gong W; Yu B; Li P; Shen S
    Nano Lett; 2017 Feb; 17(2):666-672. PubMed ID: 28045267
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabry-Perot-resonator-coupled metal pattern metamaterial for infrared suppression and radiative cooling.
    Liu D; Xu Y; Xuan Y
    Appl Opt; 2020 Aug; 59(23):6861-6867. PubMed ID: 32788776
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-Layered Thin Films for Simultaneous Infrared Camouflage and Radiative Cooling.
    Zhang L; Zhang W; Liu Y; Liu L
    Materials (Basel); 2023 Jun; 16(11):. PubMed ID: 37297322
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.