These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 33172683)

  • 1. Impact of sulfate and iron oxide on bacterial community dynamics in paddy soil under alternate watering conditions.
    Yuan C; Na S; Li F; Hu H
    J Hazard Mater; 2021 Apr; 408():124417. PubMed ID: 33172683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Community dynamics of As(V)-reducing and As(III)-oxidizing genes during a wet-dry cycle in paddy soil amended with organic matter, gypsum, or iron oxide.
    Yuan C; Qiao J; Li F; Zhang X; Du Y; Hu M; Sun W
    J Hazard Mater; 2020 Jul; 393():122485. PubMed ID: 32193132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cadmium solubility in paddy soil amended with organic matter, sulfate, and iron oxide in alternative watering conditions.
    Yuan C; Li F; Cao W; Yang Z; Hu M; Sun W
    J Hazard Mater; 2019 Oct; 378():120672. PubMed ID: 31202061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Syntrophobacteraceae as major acetate-degrading sulfate reducing bacteria in Italian paddy soil.
    Liu P; Pommerenke B; Conrad R
    Environ Microbiol; 2018 Jan; 20(1):337-354. PubMed ID: 29160027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution and diversity of bacterial communities and sulphate-reducing bacteria in a paddy soil irrigated with acid mine drainage.
    Wang H; Guo CL; Yang CF; Lu GN; Chen MQ; Dang Z
    J Appl Microbiol; 2016 Jul; 121(1):196-206. PubMed ID: 27005987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gypsum amendment to rice paddy soil stimulated bacteria involved in sulfur cycling but largely preserved the phylogenetic composition of the total bacterial community.
    Wörner S; Zecchin S; Dan J; Todorova NH; Loy A; Conrad R; Pester M
    Environ Microbiol Rep; 2016 Jun; 8(3):413-23. PubMed ID: 27085098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effects of Gypsum on CH
    Hu XY; Xiang QJ; Mu ZJ
    Huan Jing Ke Xue; 2018 Aug; 39(8):3894-3900. PubMed ID: 29998699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rice Paddy Nitrospirae Carry and Express Genes Related to Sulfate Respiration: Proposal of the New Genus "Candidatus Sulfobium".
    Zecchin S; Mueller RC; Seifert J; Stingl U; Anantharaman K; von Bergen M; Cavalca L; Pester M
    Appl Environ Microbiol; 2018 Mar; 84(5):. PubMed ID: 29247059
    [No Abstract]   [Full Text] [Related]  

  • 9. Selenium inhibits sulfate-mediated methylmercury production in rice paddy soil.
    Wang YJ; Dang F; Zhao JT; Zhong H
    Environ Pollut; 2016 Jun; 213():232-239. PubMed ID: 26901075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic.
    Wang N; Xue XM; Juhasz AL; Chang ZZ; Li HB
    Environ Pollut; 2017 Jan; 220(Pt A):514-522. PubMed ID: 27720546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abundance and community succession of nitrogen-fixing bacteria in ferrihydrite enriched cultures of paddy soils is closely related to Fe(III)-reduction.
    Jia R; Wang K; Li L; Qu Z; Shen W; Qu D
    Sci Total Environ; 2020 Jun; 720():137633. PubMed ID: 32146407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes and relations of photosynthesis and iron cycling in anoxic paddy soil amended with high concentrations of sulfate.
    Chen Q; Jia R; Qu D; Li M
    Environ Sci Pollut Res Int; 2017 Apr; 24(12):11425-11434. PubMed ID: 28316044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of different active metal-reducing bacteria in arsenic release from arsenic-contaminated paddy soil amended with biochar.
    Qiao JT; Li XM; Li FB
    J Hazard Mater; 2018 Feb; 344():958-967. PubMed ID: 29197791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Significance of Fe(II) and environmental factors on carbon-fixing bacterial community in two paddy soils.
    Hussain S; Min Z; Xiuxiu Z; Khan MH; Lifeng L; Hui C
    Ecotoxicol Environ Saf; 2019 Oct; 182():109456. PubMed ID: 31398779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling between nitrogen-fixing and iron(III)-reducing bacteria as revealed by the metabolically active bacterial community in flooded paddy soils amended with glucose.
    Li L; Jia R; Qu Z; Li T; Shen W; Qu D
    Sci Total Environ; 2020 May; 716():137056. PubMed ID: 32036141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methanogenesis affected by the co-occurrence of iron(III) oxides and humic substances.
    Zhou S; Xu J; Yang G; Zhuang L
    FEMS Microbiol Ecol; 2014 Apr; 88(1):107-20. PubMed ID: 24372096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Responses of methanogen mcrA genes and their transcripts to an alternate dry/wet cycle of paddy field soil.
    Ma K; Conrad R; Lu Y
    Appl Environ Microbiol; 2012 Jan; 78(2):445-54. PubMed ID: 22101043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Comparison of Soil Bacterial Community Structure Between Paddy Fields and Dry Land in the Huixian Karst Wetland, China].
    Jia YH; Jin ZJ; Yuan W; Cheng YY; Qiu JM; Liang JT; Pan FJ; Liu DS
    Huan Jing Ke Xue; 2019 Jul; 40(7):3313-3323. PubMed ID: 31854733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial sulfate reduction decreases arsenic mobilization in flooded paddy soils with high potential for microbial Fe reduction.
    Xu X; Wang P; Zhang J; Chen C; Wang Z; Kopittke PM; Kretzschmar R; Zhao FJ
    Environ Pollut; 2019 Aug; 251():952-960. PubMed ID: 31234262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geographical pattern of methanogenesis in paddy and wetland soils across eastern China.
    Hao X; Jiao S; Lu Y
    Sci Total Environ; 2019 Feb; 651(Pt 1):281-290. PubMed ID: 30243161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.