These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

584 related articles for article (PubMed ID: 33173027)

  • 1. Pharmacological antagonism of kainate receptor rescues dysfunction and loss of dopamine neurons in a mouse model of human parkin-induced toxicity.
    Regoni M; Cattaneo S; Mercatelli D; Novello S; Passoni A; Bagnati R; Davoli E; Croci L; Consalez GG; Albanese F; Zanetti L; Passafaro M; Serratto GM; Di Fonzo A; Valtorta F; Ciammola A; Taverna S; Morari M; Sassone J
    Cell Death Dis; 2020 Nov; 11(11):963. PubMed ID: 33173027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The kainate receptor antagonist UBP310 but not single deletion of GluK1, GluK2, or GluK3 subunits, inhibits MPTP-induced degeneration in the mouse midbrain.
    Stayte S; Laloli KJ; Rentsch P; Lowth A; Li KM; Pickford R; Vissel B
    Exp Neurol; 2020 Jan; 323():113062. PubMed ID: 31513786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early Dysfunction of Substantia Nigra Dopamine Neurons in the ParkinQ311X Mouse.
    Regoni M; Zanetti L; Comai S; Mercatelli D; Novello S; Albanese F; Croci L; Consalez GG; Ciammola A; Valtorta F; Morari M; Sassone J
    Biomedicines; 2021 May; 9(5):. PubMed ID: 34063112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parkin regulates kainate receptors by interacting with the GluK2 subunit.
    Maraschi A; Ciammola A; Folci A; Sassone F; Ronzitti G; Cappelletti G; Silani V; Sato S; Hattori N; Mazzanti M; Chieregatti E; Mulle C; Passafaro M; Sassone J
    Nat Commun; 2014 Oct; 5():5182. PubMed ID: 25316086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Down-regulation of ghrelin receptors on dopaminergic neurons in the substantia nigra contributes to Parkinson's disease-like motor dysfunction.
    Suda Y; Kuzumaki N; Sone T; Narita M; Tanaka K; Hamada Y; Iwasawa C; Shibasaki M; Maekawa A; Matsuo M; Akamatsu W; Hattori N; Okano H; Narita M
    Mol Brain; 2018 Feb; 11(1):6. PubMed ID: 29458391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of parkin in the differential susceptibility of tuberoinfundibular and nigrostriatal dopamine neurons to acute toxicant exposure.
    Benskey MJ; Manfredsson FP; Lookingland KJ; Goudreau JL
    Neurotoxicology; 2015 Jan; 46():1-11. PubMed ID: 25447324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Role of Kainate Receptors in the Pathophysiology of Hypoxia-Induced Seizures in the Neonatal Mouse.
    Grosenbaugh DK; Ross BM; Wagley P; Zanelli SA
    Sci Rep; 2018 May; 8(1):7035. PubMed ID: 29728616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping the ligand binding sites of kainate receptors: molecular determinants of subunit-selective binding of the antagonist [3H]UBP310.
    Atlason PT; Scholefield CL; Eaves RJ; Mayo-Martin MB; Jane DE; Molnár E
    Mol Pharmacol; 2010 Dec; 78(6):1036-45. PubMed ID: 20837679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endogenous Parkin Preserves Dopaminergic Substantia Nigral Neurons following Mitochondrial DNA Mutagenic Stress.
    Pickrell AM; Huang CH; Kennedy SR; Ordureau A; Sideris DP; Hoekstra JG; Harper JW; Youle RJ
    Neuron; 2015 Jul; 87(2):371-81. PubMed ID: 26182419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Absence of Parkin Does Not Promote Dopamine or Mitochondrial Dysfunction in PolgA
    Scott L; Karuppagounder SS; Neifert S; Kang BG; Wang H; Dawson VL; Dawson TM
    J Neurosci; 2022 Dec; 42(49):9263-9277. PubMed ID: 36280265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The synaptic function of parkin.
    Sassone J; Serratto G; Valtorta F; Silani V; Passafaro M; Ciammola A
    Brain; 2017 Sep; 140(9):2265-2272. PubMed ID: 28335015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of Parkinson's disease-associated genes in mice reveals altered survival and bioenergetics of Parkin-deficient dopamine neurons.
    Giguère N; Pacelli C; Saumure C; Bourque MJ; Matheoud D; Levesque D; Slack RS; Park DS; Trudeau LÉ
    J Biol Chem; 2018 Jun; 293(25):9580-9593. PubMed ID: 29700116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutant Twinkle increases dopaminergic neurodegeneration, mtDNA deletions and modulates Parkin expression.
    Song L; Shan Y; Lloyd KC; Cortopassi GA
    Hum Mol Genet; 2012 Dec; 21(23):5147-58. PubMed ID: 22949510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells.
    Jiang H; Ren Y; Yuen EY; Zhong P; Ghaedi M; Hu Z; Azabdaftari G; Nakaso K; Yan Z; Feng J
    Nat Commun; 2012 Feb; 3():668. PubMed ID: 22314364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diaminodiphenyl sulfone-induced parkin ameliorates age-dependent dopaminergic neuronal loss.
    Lee YI; Kang H; Ha YW; Chang KY; Cho SC; Song SO; Kim H; Jo A; Khang R; Choi JY; Lee Y; Park SC; Shin JH
    Neurobiol Aging; 2016 May; 41():1-10. PubMed ID: 27103513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parkin protects human dopaminergic neuroblastoma cells against dopamine-induced apoptosis.
    Jiang H; Ren Y; Zhao J; Feng J
    Hum Mol Genet; 2004 Aug; 13(16):1745-54. PubMed ID: 15198987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptotagmin-11 is a critical mediator of parkin-linked neurotoxicity and Parkinson's disease-like pathology.
    Wang C; Kang X; Zhou L; Chai Z; Wu Q; Huang R; Xu H; Hu M; Sun X; Sun S; Li J; Jiao R; Zuo P; Zheng L; Yue Z; Zhou Z
    Nat Commun; 2018 Jan; 9(1):81. PubMed ID: 29311685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased vulnerability of nigral dopamine neurons after expansion of their axonal arborization size through D2 dopamine receptor conditional knockout.
    Giguère N; Delignat-Lavaud B; Herborg F; Voisin A; Li Y; Jacquemet V; Anand-Srivastava M; Gether U; Giros B; Trudeau LÉ
    PLoS Genet; 2019 Aug; 15(8):e1008352. PubMed ID: 31449520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuronal NLRP3 is a parkin substrate that drives neurodegeneration in Parkinson's disease.
    Panicker N; Kam TI; Wang H; Neifert S; Chou SC; Kumar M; Brahmachari S; Jhaldiyal A; Hinkle JT; Akkentli F; Mao X; Xu E; Karuppagounder SS; Hsu ET; Kang SU; Pletnikova O; Troncoso J; Dawson VL; Dawson TM
    Neuron; 2022 Aug; 110(15):2422-2437.e9. PubMed ID: 35654037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neto2 Assembles with Kainate Receptors in DRG Neurons during Development and Modulates Neurite Outgrowth in Adult Sensory Neurons.
    Vernon CG; Swanson GT
    J Neurosci; 2017 Mar; 37(12):3352-3363. PubMed ID: 28235897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.