These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 33173097)

  • 1. 3D micro-organisation printing of mammalian cells to generate biological tissues.
    Jeffries GDM; Xu S; Lobovkina T; Kirejev V; Tusseau F; Gyllensten C; Singh AK; Karila P; Moll L; Orwar O
    Sci Rep; 2020 Nov; 10(1):19529. PubMed ID: 33173097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks.
    Sorkio A; Koch L; Koivusalo L; Deiwick A; Miettinen S; Chichkov B; Skottman H
    Biomaterials; 2018 Jul; 171():57-71. PubMed ID: 29684677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D-bioprinted all-inclusive bioanalytical platforms for cell studies.
    Mazrouei R; Velasco V; Esfandyarpour R
    Sci Rep; 2020 Sep; 10(1):14669. PubMed ID: 32887912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional direct cell bioprinting for tissue engineering.
    Ozler SB; Bakirci E; Kucukgul C; Koc B
    J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2530-2544. PubMed ID: 27689939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D.
    Faulkner-Jones A; Fyfe C; Cornelissen DJ; Gardner J; King J; Courtney A; Shu W
    Biofabrication; 2015 Oct; 7(4):044102. PubMed ID: 26486521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional characterization of 3D contractile smooth muscle tissues generated using a unique microfluidic 3D bioprinting technology.
    Dickman CTD; Russo V; Thain K; Pan S; Beyer ST; Walus K; Getsios S; Mohamed T; Wadsworth SJ
    FASEB J; 2020 Jan; 34(1):1652-1664. PubMed ID: 31914670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proof-of-concept: 3D bioprinting of pigmented human skin constructs.
    Ng WL; Qi JTZ; Yeong WY; Naing MW
    Biofabrication; 2018 Jan; 10(2):025005. PubMed ID: 29360631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic bioprinting for organ-on-a-chip models.
    Yu F; Choudhury D
    Drug Discov Today; 2019 Jun; 24(6):1248-1257. PubMed ID: 30940562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility of Bioprinting with a Modified Desktop 3D Printer.
    Goldstein TA; Epstein CJ; Schwartz J; Krush A; Lagalante DJ; Mercadante KP; Zeltsman D; Smith LP; Grande DA
    Tissue Eng Part C Methods; 2016 Dec; 22(12):1071-1076. PubMed ID: 27819188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D modeling of normal skin and cutaneous squamous cell carcinoma. A comparative study in 2D cultures, spheroids, and 3D bioprinted systems.
    Kurzyk A; Szumera-Ciećkiewicz A; Miłoszewska J; Chechlińska M
    Biofabrication; 2024 Feb; 16(2):. PubMed ID: 38377605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioprinting Cartilage Tissue from Mesenchymal Stem Cells and PEG Hydrogel.
    Gao G; Hubbell K; Schilling AF; Dai G; Cui X
    Methods Mol Biol; 2017; 1612():391-398. PubMed ID: 28634958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Three-dimensional bioprinted microstructure promotes proliferation and viability of murine epithelial stem cells in vitro].
    Liu YF; Huang S; Yao B; Li Z; Li X; Fu XB; Wu X
    Nan Fang Yi Ke Da Xue Xue Bao; 2017 Jun; 37(6):761-766. PubMed ID: 28669949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ExCeL: combining extrusion printing on cellulose scaffolds with lamination to create in vitro biological models.
    Shahin-Shamsabadi A; Selvaganapathy PR
    Biofabrication; 2019 Apr; 11(3):035002. PubMed ID: 30769331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 3D bioprinted complex structure for engineering the muscle-tendon unit.
    Merceron TK; Burt M; Seol YJ; Kang HW; Lee SJ; Yoo JJ; Atala A
    Biofabrication; 2015 Jun; 7(3):035003. PubMed ID: 26081669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pre-set extrusion bioprinting for multiscale heterogeneous tissue structure fabrication.
    Kang D; Ahn G; Kim D; Kang HW; Yun S; Yun WS; Shim JH; Jin S
    Biofabrication; 2018 Jun; 10(3):035008. PubMed ID: 29786607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ECM concentration and cell-mediated traction forces play a role in vascular network assembly in 3D bioprinted tissue.
    Zhang G; Varkey M; Wang Z; Xie B; Hou R; Atala A
    Biotechnol Bioeng; 2020 Apr; 117(4):1148-1158. PubMed ID: 31840798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioprinting of 3D Tissue Models Using Decellularized Extracellular Matrix Bioink.
    Pati F; Cho DW
    Methods Mol Biol; 2017; 1612():381-390. PubMed ID: 28634957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of Liver Decellularized Extracellular Matrix Bioink for Three-Dimensional Cell Printing-Based Liver Tissue Engineering.
    Lee H; Han W; Kim H; Ha DH; Jang J; Kim BS; Cho DW
    Biomacromolecules; 2017 Apr; 18(4):1229-1237. PubMed ID: 28277649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Resolution Patterned Cellular Constructs by Droplet-Based 3D Printing.
    Graham AD; Olof SN; Burke MJ; Armstrong JPK; Mikhailova EA; Nicholson JG; Box SJ; Szele FG; Perriman AW; Bayley H
    Sci Rep; 2017 Aug; 7(1):7004. PubMed ID: 28765636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of Multilayered 3D Structures of HepG2 Cells Using a Bio-printing Technique.
    Jeon H; Kang K; Park SA; Kim WD; Paik SS; Lee SH; Jeong J; Choi D
    Gut Liver; 2017 Jan; 11(1):121-128. PubMed ID: 27559001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.