These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33173148)

  • 21. A re-assessment of the effects of treatment with a non-steroidal anti-inflammatory (ibuprofen) on promoting axon regeneration via RhoA inhibition after spinal cord injury.
    Sharp KG; Yee KM; Stiles TL; Aguilar RM; Steward O
    Exp Neurol; 2013 Oct; 248():321-37. PubMed ID: 23830951
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neurological and functional status 1 year after acute spinal cord injury: estimates of functional recovery in National Acute Spinal Cord Injury Study II from results modeled in National Acute Spinal Cord Injury Study III.
    Bracken MB; Holford TR
    J Neurosurg; 2002 Apr; 96(3 Suppl):259-66. PubMed ID: 11990832
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vivo two-photon imaging reveals a role of progesterone in reducing axonal dieback after spinal cord injury in mice.
    Yang Z; Xie W; Ju F; Khan A; Zhang S
    Neuropharmacology; 2017 Apr; 116():30-37. PubMed ID: 27965141
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of ZBD-2 on chronic pain, depressive-like behaviors, and recovery of motor function following spinal cord injury in mice.
    Li XM; Meng J; Li LT; Guo T; Yang LK; Shi QX; Li XB; Chen Y; Yang Q; Zhao JN
    Behav Brain Res; 2017 Mar; 322(Pt A):92-99. PubMed ID: 28108322
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An injectable heparin-Laponite hydrogel bridge FGF4 for spinal cord injury by stabilizing microtubule and improving mitochondrial function.
    Wang C; Gong Z; Huang X; Wang J; Xia K; Ying L; Shu J; Yu C; Zhou X; Li F; Liang C; Chen Q
    Theranostics; 2019; 9(23):7016-7032. PubMed ID: 31660084
    [No Abstract]   [Full Text] [Related]  

  • 26. Regulation of axonal regeneration following spinal cord injury in the lamprey.
    Benes JA; House KN; Burks FN; Conaway KP; Julien DP; Donley JP; Iyamu MA; McClellan AD
    J Neurophysiol; 2017 Sep; 118(3):1439-1456. PubMed ID: 28469003
    [TBL] [Abstract][Full Text] [Related]  

  • 27. FAS deficiency reduces apoptosis, spares axons and improves function after spinal cord injury.
    Casha S; Yu WR; Fehlings MG
    Exp Neurol; 2005 Dec; 196(2):390-400. PubMed ID: 16202410
    [TBL] [Abstract][Full Text] [Related]  

  • 28. FGF1 improves functional recovery through inducing PRDX1 to regulate autophagy and anti-ROS after spinal cord injury.
    Li J; Wang Q; Cai H; He Z; Wang H; Chen J; Zheng Z; Yin J; Liao Z; Xu H; Xiao J; Gong F
    J Cell Mol Med; 2018 May; 22(5):2727-2738. PubMed ID: 29512938
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dose-dependent beneficial and detrimental effects of ROCK inhibitor Y27632 on axonal sprouting and functional recovery after rat spinal cord injury.
    Chan CC; Khodarahmi K; Liu J; Sutherland D; Oschipok LW; Steeves JD; Tetzlaff W
    Exp Neurol; 2005 Dec; 196(2):352-64. PubMed ID: 16154567
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combined application of Rho-ROCKII and GSK-3β inhibitors exerts an improved protective effect on axonal regeneration in rats with spinal cord injury.
    Zhang G; Lei F; Zhou Q; Feng D; Bai Y
    Mol Med Rep; 2016 Dec; 14(6):5180-5188. PubMed ID: 27840930
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Withanoside IV improves hindlimb function by facilitating axonal growth and increase in peripheral nervous system myelin level after spinal cord injury.
    Nakayama N; Tohda C
    Neurosci Res; 2007 Jun; 58(2):176-82. PubMed ID: 17386954
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of combined treatment with methylprednisolone and soluble Nogo-66 receptor after rat spinal cord injury.
    Ji B; Li M; Budel S; Pepinsky RB; Walus L; Engber TM; Strittmatter SM; Relton JK
    Eur J Neurosci; 2005 Aug; 22(3):587-94. PubMed ID: 16101740
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ameliorative Effects of p75NTR-ED-Fc on Axonal Regeneration and Functional Recovery in Spinal Cord-Injured Rats.
    Wang YT; Lu XM; Zhu F; Huang P; Yu Y; Long ZY; Wu YM
    Mol Neurobiol; 2015 Dec; 52(3):1821-1834. PubMed ID: 25394381
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MicroRNA-421-3p-abundant small extracellular vesicles derived from M2 bone marrow-derived macrophages attenuate apoptosis and promote motor function recovery via inhibition of mTOR in spinal cord injury.
    Wang J; Rong Y; Ji C; Lv C; Jiang D; Ge X; Gong F; Tang P; Cai W; Liu W; Fan J
    J Nanobiotechnology; 2020 May; 18(1):72. PubMed ID: 32404105
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low-energy extracorporeal shock wave therapy for promotion of vascular endothelial growth factor expression and angiogenesis and improvement of locomotor and sensory functions after spinal cord injury.
    Yahata K; Kanno H; Ozawa H; Yamaya S; Tateda S; Ito K; Shimokawa H; Itoi E
    J Neurosurg Spine; 2016 Dec; 25(6):745-755. PubMed ID: 27367940
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vector-induced NT-3 expression in rats promotes collateral growth of injured corticospinal tract axons far rostral to a spinal cord injury.
    Weishaupt N; Mason AL; Hurd C; May Z; Zmyslowski DC; Galleguillos D; Sipione S; Fouad K
    Neuroscience; 2014 Jul; 272():65-75. PubMed ID: 24814724
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NT-3 Promotes Oligodendrocyte Proliferation and Nerve Function Recovery After Spinal Cord Injury by Inhibiting Autophagy Pathway.
    Cong Y; Wang C; Wang J; Li H; Li Q
    J Surg Res; 2020 Mar; 247():128-135. PubMed ID: 31776022
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neuroprotective Effects of Direct Intrathecal Administration of Granulocyte Colony-Stimulating Factor in Rats with Spinal Cord Injury.
    Chen WF; Chen CH; Chen NF; Sung CS; Wen ZH
    CNS Neurosci Ther; 2015 Sep; 21(9):698-707. PubMed ID: 26190345
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Matrine Directly Activates Extracellular Heat Shock Protein 90, Resulting in Axonal Growth and Functional Recovery in Spinal Cord Injured-Mice.
    Tanabe N; Kuboyama T; Tohda C
    Front Pharmacol; 2018; 9():446. PubMed ID: 29867458
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Resistance of interleukin-6 to the extracellular inhibitory environment promotes axonal regeneration and functional recovery following spinal cord injury.
    Yang G; Tang WY
    Int J Mol Med; 2017 Feb; 39(2):437-445. PubMed ID: 28075461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.