These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33173150)

  • 1. Co-blending modification of activated coke using pyrolusite and titanium ore for low-temperature NOx removal.
    Yang L; Yao L; Lai Y; Jiang X; Jiang W
    Sci Rep; 2020 Nov; 10(1):19455. PubMed ID: 33173150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physicochemical characteristics and desulphurization activity of pyrolusite-blended activated coke.
    Yang L; Jiang X; Huang T; Jiang W
    Environ Technol; 2015; 36(22):2847-54. PubMed ID: 25982809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on the denitrification performance of Fe
    Wang J; Lu P; Su W; Xing Y; Li R; Li Y; Zhu T; Yue H; Cui Y
    Environ Sci Pollut Res Int; 2019 Jul; 26(20):20248-20263. PubMed ID: 31098908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of low-temperature selective catalytic reduction of NO
    Ge T; Zhu B; Sun Y; Song W; Fang Q; Zhong Y
    Environ Sci Pollut Res Int; 2019 Nov; 26(32):33067-33075. PubMed ID: 31512139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison on surface properties and desulfurization of MnO
    Zhang G; Zhao X; Ning P; Yang D; Jiang X; Jiang W
    J Air Waste Manag Assoc; 2018 Sep; 68(9):958-968. PubMed ID: 29667516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of K-Modified Blue Coke-Based Activated Carbon on Low Temperature Catalytic Performance of Supported Mn-Ce/Activated Carbon.
    Shen Z; Xing X; Wang S; Lv M; Li J; Li T
    ACS Omega; 2022 Mar; 7(10):8798-8807. PubMed ID: 35309461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved activity of Ho-modified Mn/Ti catalysts for the selective catalytic reduction of NO with NH
    Zhang Y; Wu P; Li G; Zhuang K; Shen K; Wang S; Huang T
    Environ Sci Pollut Res Int; 2020 Jul; 27(21):26954-26964. PubMed ID: 32382914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study on the Mn/TiO
    Zhang Y; Huang T; Xiao R; Xu H; Shen K; Zhou C
    Environ Technol; 2018 May; 39(10):1284-1294. PubMed ID: 28504006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-Temperature Selective Catalytic Reduction DeNO
    Ren X; Ou Z; Wu B
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural manganese ore catalyst for low-temperature selective catalytic reduction of NO with NH
    Zhu B; Yin S; Sun Y; Zhu Z; Li J
    Environ Sci Pollut Res Int; 2017 Nov; 24(31):24584-24592. PubMed ID: 28913690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Promotional effect of Mn modification on DeNO
    Zi Z; Zhu B; Sun Y; Fang Q; Ge T
    Environ Sci Pollut Res Int; 2019 Apr; 26(10):10117-10126. PubMed ID: 30747322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-cost Mn-Fe/SAPO-34 catalyst from natural ferromanganese ore and lithium-silicon-powder waste for efficient low-temperature NH
    Pu Y; Yang L; Yao C; Jiang W; Yao L
    Chemosphere; 2022 Apr; 293():133465. PubMed ID: 34973259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of Manganese Blending-Modified Activated Coke for Flue Gas Desulfurization.
    Liao W; Meng X; Yao L; Jiang W; Yang L
    ACS Omega; 2021 Nov; 6(46):30949-30959. PubMed ID: 34841138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of doping Cr on NH
    Xie C; Zhu B; Sun Y; Song W; Xu M
    J Hazard Mater; 2021 Aug; 416():125798. PubMed ID: 33862481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boosting the Alkali/Heavy Metal Poisoning Resistance for NO Removal by Using Iron-Titanium Pillared Montmorillonite Catalysts.
    Xu D; Wu W; Wang P; Deng J; Yan T; Zhang D
    J Hazard Mater; 2020 Nov; 399():122947. PubMed ID: 32521318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of different introduction methods of cerium and tin on the properties of titanium-based catalysts for the selective catalytic reduction of NO by NH
    Qi L; Sun Z; Yang T; Wang J; Tang Q; Huang T; Tang C; Gao F; Dong L
    J Colloid Interface Sci; 2022 May; 613():320-336. PubMed ID: 35051718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of pre-oxidation process on V
    Xie J; Li M; Wu Z; Zeng Y; Zhang S; Liu J; Zhong Q
    Environ Sci Pollut Res Int; 2022 Feb; 29(9):13534-13540. PubMed ID: 34595700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison study of Cu-Fe-Ti and Co-Fe-Ti oxide catalysts for selective catalytic reduction of NO with NH3 at low temperature.
    Zhu L; Zhong Z; Yang H; Wang C
    J Colloid Interface Sci; 2016 Sep; 478():11-21. PubMed ID: 27280535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Desulphurization performance of TiO2-modified activated carbon by a one-step carbonization-activation method.
    Zhang C; Yang D; Jiang X; Jiang W
    Environ Technol; 2016 Aug; 37(15):1895-905. PubMed ID: 26695433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MOF-74 as an Efficient Catalyst for the Low-Temperature Selective Catalytic Reduction of NO
    Jiang H; Wang Q; Wang H; Chen Y; Zhang M
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):26817-26826. PubMed ID: 27661447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.