These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 33173168)

  • 1. NeoR, a near-infrared absorbing rhodopsin.
    Broser M; Spreen A; Konold PE; Schiewer E; Adam S; Borin V; Schapiro I; Seifert R; Kennis JTM; Bernal Sierra YA; Hegemann P
    Nat Commun; 2020 Nov; 11(1):5682. PubMed ID: 33173168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diversity of rhodopsin cyclases in zoospore-forming fungi.
    Broser M; Busse W; Spreen A; Reh M; Bernal Sierra YA; Hwang S; Utesch T; Sun H; Hegemann P
    Proc Natl Acad Sci U S A; 2023 Oct; 120(44):e2310600120. PubMed ID: 37871207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Far-Red Absorbing Rhodopsins, Insights From Heterodimeric Rhodopsin-Cyclases.
    Broser M
    Front Mol Biosci; 2021; 8():806922. PubMed ID: 35127823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly conserved glutamic acid in the extracellular IV-V loop in rhodopsins acts as the counterion in retinochrome, a member of the rhodopsin family.
    Terakita A; Yamashita T; Shichida Y
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14263-7. PubMed ID: 11106382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental Assessment of the Electronic and Geometrical Structure of a Near-Infrared Absorbing and Highly Fluorescent Microbial Rhodopsin.
    Broser M; Andruniów T; Kraskov A; Palombo R; Katz S; Kloz M; Dostál J; Bernardo C; Kennis JTM; Hegemann P; Olivucci M; Hildebrandt P
    J Phys Chem Lett; 2023 Oct; 14(41):9291-9295. PubMed ID: 37815402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Counterion displacement in the molecular evolution of the rhodopsin family.
    Terakita A; Koyanagi M; Tsukamoto H; Yamashita T; Miyata T; Shichida Y
    Nat Struct Mol Biol; 2004 Mar; 11(3):284-9. PubMed ID: 14981504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The nature of the primary photochemical events in rhodopsin and isorhodopsin.
    Birge RR; Einterz CM; Knapp HM; Murray LP
    Biophys J; 1988 Mar; 53(3):367-85. PubMed ID: 2964878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directed Evolution of a Bright Near-Infrared Fluorescent Rhodopsin Using a Synthetic Chromophore.
    Herwig L; Rice AJ; Bedbrook CN; Zhang RK; Lignell A; Cahn JKB; Renata H; Dodani SC; Cho I; Cai L; Gradinaru V; Arnold FH
    Cell Chem Biol; 2017 Mar; 24(3):415-425. PubMed ID: 28262559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex Photochemistry within the Green-Absorbing Channelrhodopsin ReaChR.
    Krause BS; Grimm C; Kaufmann JCD; Schneider F; Sakmar TP; Bartl FJ; Hegemann P
    Biophys J; 2017 Mar; 112(6):1166-1175. PubMed ID: 28355544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The counterion-retinylidene Schiff base interaction of an invertebrate rhodopsin rearranges upon light activation.
    Nagata T; Koyanagi M; Tsukamoto H; Mutt E; Schertler GFX; Deupi X; Terakita A
    Commun Biol; 2019; 2():180. PubMed ID: 31098413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Importance of alanine at position 178 in proteorhodopsin for absorption of prevalent ambient light in the marine environment.
    Yamada K; Kawanabe A; Kandori H
    Biochemistry; 2010 Mar; 49(11):2416-23. PubMed ID: 20170125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photophysiological functions of visual pigments.
    Yoshizawa T
    Adv Biophys; 1984; 17():5-67. PubMed ID: 6242325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional characterization of the rod visual pigment of the echidna (Tachyglossus aculeatus), a basal mammal.
    Bickelmann C; Morrow JM; Müller J; Chang BS
    Vis Neurosci; 2012 Sep; 29(4-5):211-7. PubMed ID: 22874131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A photochromic histidine kinase rhodopsin (HKR1) that is bimodally switched by ultraviolet and blue light.
    Luck M; Mathes T; Bruun S; Fudim R; Hagedorn R; Tran Nguyen TM; Kateriya S; Kennis JT; Hildebrandt P; Hegemann P
    J Biol Chem; 2012 Nov; 287(47):40083-90. PubMed ID: 23027869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A pivot between helices V and VI near the retinal-binding site is necessary for activation in rhodopsins.
    Tsukamoto H; Terakita A; Shichida Y
    J Biol Chem; 2010 Mar; 285(10):7351-7. PubMed ID: 20053991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coexpression of spectrally distinct rhodopsins in Aedes aegypti R7 photoreceptors.
    Hu X; Whaley MA; Stein MM; Mitchell BE; O'Tousa JE
    PLoS One; 2011; 6(8):e23121. PubMed ID: 21858005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relocating the Active-Site Lysine in Rhodopsin: 2. Evolutionary Intermediates.
    Devine EL; Theobald DL; Oprian DD
    Biochemistry; 2016 Aug; 55(34):4864-70. PubMed ID: 27486845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the molecular origin of photoreceptor noise.
    Barlow RB; Birge RR; Kaplan E; Tallent JR
    Nature; 1993 Nov; 366(6450):64-6. PubMed ID: 8232538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absorption spectra and photochemical reactions in a unique photoactive protein, middle rhodopsin MR.
    Inoue K; Reissig L; Sakai M; Kobayashi S; Homma M; Fujii M; Kandori H; Sudo Y
    J Phys Chem B; 2012 May; 116(20):5888-99. PubMed ID: 22545951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the primary photointermediates of Drosophila rhodopsin.
    Vought BW; Salcedo E; Chadwell LV; Britt SG; Birge RR; Knox BE
    Biochemistry; 2000 Nov; 39(46):14128-37. PubMed ID: 11087361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.