BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 33173417)

  • 41. Pluronic-based core/shell nanoparticles for drug delivery and diagnosis.
    Jung YW; Lee H; Kim JY; Koo EJ; Oh KS; Yuk SH
    Curr Med Chem; 2013; 20(28):3488-99. PubMed ID: 23745558
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inorganic Nanoparticles for Cancer Therapy: A Transition from Lab to Clinic.
    Bayda S; Hadla M; Palazzolo S; Riello P; Corona G; Toffoli G; Rizzolio F
    Curr Med Chem; 2018; 25(34):4269-4303. PubMed ID: 29284391
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nanoparticles in cancer therapy and diagnosis.
    Brigger I; Dubernet C; Couvreur P
    Adv Drug Deliv Rev; 2002 Sep; 54(5):631-51. PubMed ID: 12204596
    [TBL] [Abstract][Full Text] [Related]  

  • 44. pH-sensitive nano-systems for drug delivery in cancer therapy.
    Liu J; Huang Y; Kumar A; Tan A; Jin S; Mozhi A; Liang XJ
    Biotechnol Adv; 2014; 32(4):693-710. PubMed ID: 24309541
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Advances in nanomedicine towards clinical application in oncology and immunology.
    Herreros E; Morales S; Cortés C; Cabaña M; Peñaloza JP; Jara L; Geraldo D; Otero C; Fernández-Ramires R
    Curr Pharm Biotechnol; 2014; 15(9):864-79. PubMed ID: 25213311
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Drug delivery and nanodetection in lung cancer.
    Badrzadeh F; Rahmati-Yamchi M; Badrzadeh K; Valizadeh A; Zarghami N; Farkhani SM; Akbarzadeh A
    Artif Cells Nanomed Biotechnol; 2016; 44(2):618-34. PubMed ID: 25386728
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Application of Nanotechnology in the Diagnosis and Therapy of Hepatocellular Carcinoma.
    Hou XY; Jiang G; Yang CS; Tang JQ; Wei ZP; Liu YQ
    Recent Pat Anticancer Drug Discov; 2016; 11(3):322-31. PubMed ID: 26955964
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nanocarriers Based Anticancer Drugs: Current Scenario and Future Perceptions.
    Raj R; Mongia P; Kumar Sahu S; Ram A
    Curr Drug Targets; 2016; 17(2):206-28. PubMed ID: 26201484
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cancer nanotechnology: application of nanotechnology in cancer therapy.
    Misra R; Acharya S; Sahoo SK
    Drug Discov Today; 2010 Oct; 15(19-20):842-50. PubMed ID: 20727417
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tetrahedral DNA nanostructures as drug delivery and bioimaging platforms in cancer therapy.
    Duangrat R; Udomprasert A; Kangsamaksin T
    Cancer Sci; 2020 Sep; 111(9):3164-3173. PubMed ID: 32589345
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of major parameters of nanoparticles on their physical and chemical properties and recent application of nanodrug delivery system in targeted chemotherapy.
    Zhang J; Tang H; Liu Z; Chen B
    Int J Nanomedicine; 2017; 12():8483-8493. PubMed ID: 29238188
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Current trends and challenges in cancer management and therapy using designer nanomaterials.
    Navya PN; Kaphle A; Srinivas SP; Bhargava SK; Rotello VM; Daima HK
    Nano Converg; 2019 Jul; 6(1):23. PubMed ID: 31304563
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Toxicity and efficacy of carbon nanotubes and graphene: the utility of carbon-based nanoparticles in nanomedicine.
    Zhang Y; Petibone D; Xu Y; Mahmood M; Karmakar A; Casciano D; Ali S; Biris AS
    Drug Metab Rev; 2014 May; 46(2):232-46. PubMed ID: 24506522
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Adding Nanotechnology to the Metastasis Treatment Arsenal.
    Banerjee D; Cieslar-Pobuda A; Zhu GH; Wiechec E; Patra HK
    Trends Pharmacol Sci; 2019 Jun; 40(6):403-418. PubMed ID: 31076247
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nanotechnology-based intelligent drug design for cancer metastasis treatment.
    Gao Y; Xie J; Chen H; Gu S; Zhao R; Shao J; Jia L
    Biotechnol Adv; 2014; 32(4):761-77. PubMed ID: 24211475
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Therapeutic and diagnostic applications of nanoparticles.
    Youns M; Hoheisel JD; Efferth T
    Curr Drug Targets; 2011 Mar; 12(3):357-65. PubMed ID: 20955146
    [TBL] [Abstract][Full Text] [Related]  

  • 57. New Strategies in the Design of Nanomedicines to Oppose Uptake by the Mononuclear Phagocyte System and Enhance Cancer Therapeutic Efficacy.
    Zhou Y; Dai Z
    Chem Asian J; 2018 Nov; 13(22):3333-3340. PubMed ID: 29441706
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Surface design of magnetic nanoparticles for stimuli-responsive cancer imaging and therapy.
    Kang T; Li F; Baik S; Shao W; Ling D; Hyeon T
    Biomaterials; 2017 Aug; 136():98-114. PubMed ID: 28525855
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Engineered nanoparticles for drug delivery in cancer therapy.
    Sun T; Zhang YS; Pang B; Hyun DC; Yang M; Xia Y
    Angew Chem Int Ed Engl; 2014 Nov; 53(46):12320-64. PubMed ID: 25294565
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Recent Development of pH-Responsive Polymers for Cancer Nanomedicine.
    Tang H; Zhao W; Yu J; Li Y; Zhao C
    Molecules; 2018 Dec; 24(1):. PubMed ID: 30577475
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.