These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33173801)

  • 61. Mixed-precision iterative refinement using tensor cores on GPUs to accelerate solution of linear systems.
    Haidar A; Bayraktar H; Tomov S; Dongarra J; Higham NJ
    Proc Math Phys Eng Sci; 2020 Nov; 476(2243):20200110. PubMed ID: 33363437
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Revisiting Molecular Dynamics on a CPU/GPU system: Water Kernel and SHAKE Parallelization.
    Ruymgaart AP; Elber R
    J Chem Theory Comput; 2012 Nov; 8(11):4624-4636. PubMed ID: 23264758
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald.
    Salomon-Ferrer R; Götz AW; Poole D; Le Grand S; Walker RC
    J Chem Theory Comput; 2013 Sep; 9(9):3878-88. PubMed ID: 26592383
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Multi-GPU accelerated three-dimensional FDTD method for electromagnetic simulation.
    Nagaoka T; Watanabe S
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():401-4. PubMed ID: 22254333
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Massively Parallel Implementation of Divide-and-Conquer Jacobi Iterations Using Particle-Mesh Ewald for Force Field Polarization.
    Nocito D; Beran GJO
    J Chem Theory Comput; 2018 Jul; 14(7):3633-3642. PubMed ID: 29847125
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Correction to "Massively Parallel Implementation of Steered Molecular Dynamics in Tinker-HP: Comparisons of Polarizable and Nonpolarizable Simulations of Realistic Systems".
    Célerse F; Lagardère L; Derat E; Piquemal JP
    J Chem Theory Comput; 2021 May; 17(5):3235-3236. PubMed ID: 33908765
    [No Abstract]   [Full Text] [Related]  

  • 67. Acceleration of High Angular Momentum Electron Repulsion Integrals and Integral Derivatives on Graphics Processing Units.
    Miao Y; Merz KM
    J Chem Theory Comput; 2015 Apr; 11(4):1449-62. PubMed ID: 26574356
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Fast on-site Monte Carlo tool for dose calculations in CT applications.
    Chen W; Kolditz D; Beister M; Bohle R; Kalender WA
    Med Phys; 2012 Jun; 39(6):2985-96. PubMed ID: 22755683
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Fast Analysis of Molecular Dynamics Trajectories with Graphics Processing Units-Radial Distribution Function Histogramming.
    Levine BG; Stone JE; Kohlmeyer A
    J Comput Phys; 2011 May; 230(9):3556-3569. PubMed ID: 21547007
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Scalable and accurate multi-GPU-based image reconstruction of large-scale ptychography data.
    Yu X; Nikitin V; Ching DJ; Aslan S; Gürsoy D; Biçer T
    Sci Rep; 2022 Mar; 12(1):5334. PubMed ID: 35351971
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Faster Self-Consistent Field (SCF) Calculations on GPU Clusters.
    Barca GMJ; Alkan M; Galvez-Vallejo JL; Poole DL; Rendell AP; Gordon MS
    J Chem Theory Comput; 2021 Dec; 17(12):7486-7503. PubMed ID: 34780186
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Implicit Solvents for the Polarizable Atomic Multipole AMOEBA Force Field.
    Corrigan RA; Qi G; Thiel AC; Lynn JR; Walker BD; Casavant TL; Lagardere L; Piquemal JP; Ponder JW; Ren P; Schnieders MJ
    J Chem Theory Comput; 2021 Apr; 17(4):2323-2341. PubMed ID: 33769814
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Accelerating calculations of RNA secondary structure partition functions using GPUs.
    Stern HA; Mathews DH
    Algorithms Mol Biol; 2013 Nov; 8(1):29. PubMed ID: 24180434
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Accelerating simulations of cardiac electrical dynamics through a multi-GPU platform and an optimized data structure.
    Vasconcellos EC; Clua EWG; Fenton FH; Zamith M
    Concurr Comput; 2020 Mar; 32(5):. PubMed ID: 34720756
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Numerical behavior of NVIDIA tensor cores.
    Fasi M; Higham NJ; Mikaitis M; Pranesh S
    PeerJ Comput Sci; 2021; 7():e330. PubMed ID: 33816984
    [TBL] [Abstract][Full Text] [Related]  

  • 77. On the Efficient Evaluation of the Exchange Correlation Potential on Graphics Processing Unit Clusters.
    Williams-Young DB; de Jong WA; van Dam HJJ; Yang C
    Front Chem; 2020; 8():581058. PubMed ID: 33363105
    [TBL] [Abstract][Full Text] [Related]  

  • 78. AENET-LAMMPS and AENET-TINKER: Interfaces for accurate and efficient molecular dynamics simulations with machine learning potentials.
    Chen MS; Morawietz T; Mori H; Markland TE; Artrith N
    J Chem Phys; 2021 Aug; 155(7):074801. PubMed ID: 34418919
    [TBL] [Abstract][Full Text] [Related]  

  • 79. GPU_PBTE: an efficient solver for three and four phonon scattering rates on graphics processing units.
    Zhang B; Fan Z; Zhao CY; Gu X
    J Phys Condens Matter; 2021 Sep; 33(49):. PubMed ID: 34521073
    [TBL] [Abstract][Full Text] [Related]  

  • 80. ANKH: A Generalized
    Chollet I; Lagardère L; Piquemal JP
    J Chem Theory Comput; 2023 May; 19(10):2887-2905. PubMed ID: 37134146
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.