BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 33174413)

  • 21. CRISPR/Cas9-edited Pax6-GFP reporter system facilitates the generation of mouse neural progenitor cells during differentiation.
    Li Y; Li X; Wang H; Gao Q; Zhang J; Zhang W; Zhang Z; Li L; Yu Y; Shuai L
    J Genet Genomics; 2018 May; 45(5):277-280. PubMed ID: 29803732
    [No Abstract]   [Full Text] [Related]  

  • 22. CRISPR/Cas9-mediated efficient genome editing via protoplast-based transformation in yeast-like fungus Aureobasidium pullulans.
    Zhang Y; Feng J; Wang P; Xia J; Li X; Zou X
    Gene; 2019 Aug; 709():8-16. PubMed ID: 31132514
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New Developments in CRISPR/Cas-based Functional Genomics and their Implications for Research Using Zebrafish.
    Prykhozhij SV; Caceres L; Berman JN
    Curr Gene Ther; 2017; 17(4):286-300. PubMed ID: 29173171
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR/Cas9-Mediated Targeted Knockin of Exogenous Reporter Genes in Zebrafish.
    Kawahara A
    Methods Mol Biol; 2017; 1630():165-173. PubMed ID: 28643258
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity.
    Tadić V; Josipović G; Zoldoš V; Vojta A
    Methods; 2019 Jul; 164-165():109-119. PubMed ID: 31071448
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient SSA-mediated precise genome editing using CRISPR/Cas9.
    Li X; Bai Y; Cheng X; Kalds PGT; Sun B; Wu Y; Lv H; Xu K; Zhang Z
    FEBS J; 2018 Sep; 285(18):3362-3375. PubMed ID: 30085411
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Developing CRISPR/Cas9-Mediated Fluorescent Reporter Human Pluripotent Stem-Cell Lines for High-Content Screening.
    Vojnits K; Nakanishi M; Porras D; Kim Y; Feng Z; Golubeva D; Bhatia M
    Molecules; 2022 Apr; 27(8):. PubMed ID: 35458632
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temperature effect on CRISPR-Cas9 mediated genome editing.
    Xiang G; Zhang X; An C; Cheng C; Wang H
    J Genet Genomics; 2017 Apr; 44(4):199-205. PubMed ID: 28412228
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRISPR/Cas9 Mediated GFP Knock-in at the MAP1LC3B Locus in 293FT Cells Is Better for Bona Fide Monitoring Cellular Autophagy.
    Wu Z; Zhao J; Qiu M; Mi Z; Meng M; Guo Y; Wang H; Yuan Z
    Biotechnol J; 2018 Nov; 13(11):e1700674. PubMed ID: 29673078
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly efficient genome editing in N. gerenzanensis using an inducible CRISPR/Cas9-RecA system.
    Yue X; Xia T; Wang S; Dong H; Li Y
    Biotechnol Lett; 2020 Sep; 42(9):1699-1706. PubMed ID: 32314149
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of a CRISPR/Cas9 System for Methylococcus capsulatus
    Tapscott T; Guarnieri MT; Henard CA
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30926729
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of an Efficient Genome Editing Method by CRISPR/Cas9 in a Fish Cell Line.
    Dehler CE; Boudinot P; Martin SA; Collet B
    Mar Biotechnol (NY); 2016 Aug; 18(4):449-52. PubMed ID: 27236514
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly efficient 'hit-and-run' genome editing with unconcentrated lentivectors carrying Vpr.Prot.Cas9 protein produced from RRE-containing transcripts.
    Indikova I; Indik S
    Nucleic Acids Res; 2020 Aug; 48(14):8178-8187. PubMed ID: 32619241
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carboxylated nanodiamond-mediated CRISPR-Cas9 delivery of human retinoschisis mutation into human iPSCs and mouse retina.
    Yang TC; Chang CY; Yarmishyn AA; Mao YS; Yang YP; Wang ML; Hsu CC; Yang HY; Hwang DK; Chen SJ; Tsai ML; Lai YH; Tzeng Y; Chang CC; Chiou SH
    Acta Biomater; 2020 Jan; 101():484-494. PubMed ID: 31672582
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CRISPR/Cas9 Genome Editing vs. Over-Expression for Fluorescent Extracellular Vesicle-Labeling: A Quantitative Analysis.
    Strohmeier K; Hofmann M; Hauser F; Sivun D; Puthukodan S; Karner A; Sandner G; Le Renard PE; Jacak J; Mairhofer M
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008709
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly Efficient CRISPR-Cas9-Based Methods for Generating Deletion Mutations and F0 Embryos that Lack Gene Function in Zebrafish.
    Hoshijima K; Jurynec MJ; Klatt Shaw D; Jacobi AM; Behlke MA; Grunwald DJ
    Dev Cell; 2019 Dec; 51(5):645-657.e4. PubMed ID: 31708433
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPR/Cas9 technology as a potent molecular tool for gene therapy.
    Karimian A; Azizian K; Parsian H; Rafieian S; Shafiei-Irannejad V; Kheyrollah M; Yousefi M; Majidinia M; Yousefi B
    J Cell Physiol; 2019 Aug; 234(8):12267-12277. PubMed ID: 30697727
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient gene editing via non-viral delivery of CRISPR-Cas9 system using polymeric and hybrid microcarriers.
    Timin AS; Muslimov AR; Lepik KV; Epifanovskaya OS; Shakirova AI; Mock U; Riecken K; Okilova MV; Sergeev VS; Afanasyev BV; Fehse B; Sukhorukov GB
    Nanomedicine; 2018 Jan; 14(1):97-108. PubMed ID: 28917642
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Liposome-Based Carriers for CRISPR Genome Editing.
    Yin X; Harmancey R; McPherson DD; Kim H; Huang SL
    Int J Mol Sci; 2023 Aug; 24(16):. PubMed ID: 37629024
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPR-Cas9: from Genome Editing to Cancer Research.
    Chen S; Sun H; Miao K; Deng CX
    Int J Biol Sci; 2016; 12(12):1427-1436. PubMed ID: 27994508
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.