BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

745 related articles for article (PubMed ID: 33174550)

  • 21. An Interface Optimization Strategy for g-C
    Xu X; Wang J; Shen Y
    Langmuir; 2021 Jun; 37(23):7254-7263. PubMed ID: 34096308
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of S-scheme CdS-g-C
    Liu J; Wei X; Sun W; Guan X; Zheng X; Li J
    Environ Res; 2021 Jun; 197():111136. PubMed ID: 33839114
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation and Application of a Novel S-Scheme Nanoheterojunction Photocatalyst (LaNi
    Zhang K; Wang R; Zhong X; Jiang F
    ACS Omega; 2024 Jul; 9(26):28422-28436. PubMed ID: 38973884
    [TBL] [Abstract][Full Text] [Related]  

  • 24. First-Principles Evaluation of Volatile Organic Compounds Degradation in Z-Scheme Photocatalytic Systems: MXene and Graphitic-CN Heterostructures.
    Zhou J; Li D; Zhao W; Jing B; Ao Z; An T
    ACS Appl Mater Interfaces; 2021 May; 13(20):23843-23852. PubMed ID: 33974410
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Construction of a novel step-scheme CdS/Pt/Bi
    Hu W; Yan G; Liang R; Jiang M; Huang R; Xia Y; Chen L; Lu Y
    RSC Adv; 2021 Jul; 11(38):23288-23300. PubMed ID: 35479778
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineering an Interfacial Facet of S-Scheme Heterojunction for Improved Photocatalytic Hydrogen Evolution by Modulating the Internal Electric Field.
    Xi Y; Chen W; Dong W; Fan Z; Wang K; Shen Y; Tu G; Zhong S; Bai S
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39491-39500. PubMed ID: 34378912
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Facile fabrication of direct solid-state Z-scheme g-C
    Wang J; Zuo X; Cai W; Sun J; Ge X; Zhao H
    Dalton Trans; 2018 Nov; 47(43):15382-15390. PubMed ID: 30303508
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Constructing 3D flower-like S-scheme N-Bi
    Huang Y; Li M; Zhang X; Xing B; Ye Y; Zeng Y
    Environ Res; 2024 Feb; 242():117771. PubMed ID: 38036210
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A high-efficiency mediator-free Z-scheme Bi
    Liu J; Wang G; Li B; Ma X; Hu Y; Cheng H
    Sci Total Environ; 2021 Aug; 784():147227. PubMed ID: 33905930
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plasmonic Bi-enhanced ammoniated α-MnS/Bi
    Liu L; Dai K; Zhang J; Li L
    J Colloid Interface Sci; 2021 Dec; 604():844-855. PubMed ID: 34303177
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In situ growing Bi
    Li J; Yin Y; Liu E; Ma Y; Wan J; Fan J; Hu X
    J Hazard Mater; 2017 Jan; 321():183-192. PubMed ID: 27619964
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In-situ construct CuInS
    Chen J; Mu W; Chang C
    Environ Pollut; 2024 Jun; 351():124077. PubMed ID: 38705447
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Z-scheme mechanism of photogenerated carriers for hybrid photocatalyst Ag
    Zhou L; Zhang W; Chen L; Deng H
    J Colloid Interface Sci; 2017 Feb; 487():410-417. PubMed ID: 27810509
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rationally Designed S-Scheme CeO2/g-C3N4 Heterojunction for Promoting Visible Light Driven CO2 Photoreduction into Syngas.
    Lu KQ; Xie KL; Liao YQ; Hu JJ; Wen HR
    ChemSusChem; 2024 Jun; ():e202400969. PubMed ID: 38874368
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 0D/2D Z-Scheme Heterojunctions of Bismuth Tantalate Quantum Dots/Ultrathin g-C
    Wang K; Zhang G; Li J; Li Y; Wu X
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):43704-43715. PubMed ID: 29172438
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mediator-free direct Z-scheme photocatalytic system: BiVO4/g-C3N4 organic-inorganic hybrid photocatalyst with highly efficient visible-light-induced photocatalytic activity.
    Tian N; Huang H; He Y; Guo Y; Zhang T; Zhang Y
    Dalton Trans; 2015 Mar; 44(9):4297-307. PubMed ID: 25635354
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molybdenum disulfide loading on a Z-scheme graphitic carbon nitride and lanthanum nickelate heterojunction for enhanced photocatalysis: Interfacial charge transfer and mechanistic insights.
    Bao J; Jiang X; Huang L; Quan W; Zhang C; Wang Y; Wang H; Zeng Y; Zhang W; Ma Y; Yu S; Hu X; Tian H
    J Colloid Interface Sci; 2022 Apr; 611():684-694. PubMed ID: 34974228
    [TBL] [Abstract][Full Text] [Related]  

  • 38. What is the transfer mechanism of photogenerated carriers for the nanocomposite photocatalyst Ag3PO4/g-C3N4, band-band transfer or a direct Z-scheme?
    Meng S; Ning X; Zhang T; Chen SF; Fu X
    Phys Chem Chem Phys; 2015 May; 17(17):11577-85. PubMed ID: 25864380
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Synergistic Effect in CdS/g-C
    Niu Y; Shen J; Guo W; Zhu X; Guo L; Wang Y; Li F
    Molecules; 2023 Sep; 28(17):. PubMed ID: 37687243
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of g-C₃N₄/CuS Heterojunction with Enhanced Photocatalytic Activity Under Visible-Light.
    Wang F; Zeng Q; Tang J; Peng L; Shao J; Luo S
    J Nanosci Nanotechnol; 2020 Sep; 20(9):5896-5905. PubMed ID: 32331195
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 38.