These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 33174556)
21. Redox-Sensitive Clustered Ultrasmall Iron Oxide Nanoparticles for Switchable T Ma D; Shi M; Li X; Zhang J; Fan Y; Sun K; Jiang T; Peng C; Shi X Bioconjug Chem; 2020 Feb; 31(2):352-359. PubMed ID: 31693856 [TBL] [Abstract][Full Text] [Related]
22. Interaction between iron oxide nanoparticles (Fe Saafane A; Girard D Chem Biol Interact; 2022 Sep; 365():110053. PubMed ID: 35872045 [TBL] [Abstract][Full Text] [Related]
24. Effect of food on orally-ingested titanium dioxide and zinc oxide nanoparticle behaviors in simulated digestive tract. Zhou P; Guo M; Cui X Chemosphere; 2021 Apr; 268():128843. PubMed ID: 33172667 [TBL] [Abstract][Full Text] [Related]
25. An injectable and active hydrogel induces mutually enhanced mild magnetic hyperthermia and ferroptosis. Chen X; Wang H; Shi J; Chen Z; Wang Y; Gu S; Fu Y; Huang J; Ding J; Yu L Biomaterials; 2023 Jul; 298():122139. PubMed ID: 37148756 [TBL] [Abstract][Full Text] [Related]
26. Hydrogel Magnetomechanical Actuator Nanoparticles for Wireless Remote Control of Mechanosignaling Jeong S; Shin W; Park M; Lee JU; Lim Y; Noh K; Lee JH; Jun YW; Kwak M; Cheon J Nano Lett; 2023 Jun; 23(11):5227-5235. PubMed ID: 37192537 [TBL] [Abstract][Full Text] [Related]
27. Co-adsorption of gaseous benzene, toluene, ethylbenzene, m-xylene (BTEX) and SO2 on recyclable Fe3O4 nanoparticles at 0-101% relative humidities. Ye CZ; Ariya PA J Environ Sci (China); 2015 May; 31():164-74. PubMed ID: 25968270 [TBL] [Abstract][Full Text] [Related]
28. In Situ Characterization of Protein Adsorption onto Nanoparticles by Fluorescence Correlation Spectroscopy. Shang L; Nienhaus GU Acc Chem Res; 2017 Feb; 50(2):387-395. PubMed ID: 28145686 [TBL] [Abstract][Full Text] [Related]
29. A plasma protein corona enhances the biocompatibility of Au@Fe3O4 Janus particles. Landgraf L; Christner C; Storck W; Schick I; Krumbein I; Dähring H; Haedicke K; Heinz-Herrmann K; Teichgräber U; Reichenbach JR; Tremel W; Tenzer S; Hilger I Biomaterials; 2015 Nov; 68():77-88. PubMed ID: 26276693 [TBL] [Abstract][Full Text] [Related]
30. Enhancing low-field magnetoresistance in magnetite nanoparticles via zinc substitution. Wang T; Luan ZZ; Ge JY; Liu L; Wu D; Lv ZP; Zuo JL; Sun S Phys Chem Chem Phys; 2018 Jun; 20(25):17245-17252. PubMed ID: 29901060 [TBL] [Abstract][Full Text] [Related]
31. Roles of pH, cation valence, and ionic strength in the stability and aggregation behavior of zinc oxide nanoparticles. Wang X; Sun T; Zhu H; Han T; Wang J; Dai H J Environ Manage; 2020 Aug; 267():110656. PubMed ID: 32349960 [TBL] [Abstract][Full Text] [Related]
32. Adsorption of superparamagnetic iron oxide nanoparticles on silica and calcium carbonate sand. Park YC; Paulsen J; Nap RJ; Whitaker RD; Mathiyazhagan V; Song YQ; Hürlimann M; Szleifer I; Wong JY Langmuir; 2014 Jan; 30(3):784-92. PubMed ID: 24393031 [TBL] [Abstract][Full Text] [Related]
33. Significance of surface charge and shell material of superparamagnetic iron oxide nanoparticle (SPION) based core/shell nanoparticles on the composition of the protein corona. Sakulkhu U; Mahmoudi M; Maurizi L; Coullerez G; Hofmann-Amtenbrink M; Vries M; Motazacker M; Rezaee F; Hofmann H Biomater Sci; 2015 Feb; 3(2):265-78. PubMed ID: 26218117 [TBL] [Abstract][Full Text] [Related]
34. Interaction of colloidal zinc oxide nanoparticles with bovine serum albumin and its adsorption isotherms and kinetics. Sasidharan NP; Chandran P; Sudheer Khan S Colloids Surf B Biointerfaces; 2013 Feb; 102():195-201. PubMed ID: 23000680 [TBL] [Abstract][Full Text] [Related]
35. Role of pH and ionic strength in the aggregation of TiO Lin D; Story SD; Walker SL; Huang Q; Liang W; Cai P Environ Pollut; 2017 Sep; 228():35-42. PubMed ID: 28511037 [TBL] [Abstract][Full Text] [Related]
36. Removal of antibiotics from aqueous solution by using magnetic Fe Aydin S; Aydin ME; Beduk F; Ulvi A Sci Total Environ; 2019 Jun; 670():539-546. PubMed ID: 30909031 [TBL] [Abstract][Full Text] [Related]
37. Ex situ evaluation of the composition of protein corona of intravenously injected superparamagnetic nanoparticles in rats. Sakulkhu U; Maurizi L; Mahmoudi M; Motazacker M; Vries M; Gramoun A; Ollivier Beuzelin MG; Vallée JP; Rezaee F; Hofmann H Nanoscale; 2014 Oct; 6(19):11439-50. PubMed ID: 25154771 [TBL] [Abstract][Full Text] [Related]
38. Protein corona-mediated transport of nanoplastics in seawater-saturated porous media. Dong Z; Hou Y; Han W; Liu M; Wang J; Qiu Y Water Res; 2020 Sep; 182():115978. PubMed ID: 32622130 [TBL] [Abstract][Full Text] [Related]
39. Dextrin-coated zinc substituted cobalt-ferrite nanoparticles as an MRI contrast agent: In vitro and in vivo imaging studies. Sattarahmady N; Zare T; Mehdizadeh AR; Azarpira N; Heidari M; Lotfi M; Heli H Colloids Surf B Biointerfaces; 2015 May; 129():15-20. PubMed ID: 25819361 [TBL] [Abstract][Full Text] [Related]
40. One-pot preparation of hyaluronic acid-coated iron oxide nanoparticles for magnetic hyperthermia therapy and targeting CD44-overexpressing cancer cells. Soleymani M; Velashjerdi M; Shaterabadi Z; Barati A Carbohydr Polym; 2020 Jun; 237():116130. PubMed ID: 32241421 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]