These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 33174616)

  • 21. Covariation of deep Southern Ocean oxygenation and atmospheric CO2 through the last ice age.
    Jaccard SL; Galbraith ED; Martínez-García A; Anderson RF
    Nature; 2016 Feb; 530(7589):207-10. PubMed ID: 26840491
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Slow science: the value of long ocean biogeochemistry records.
    Henson SA
    Philos Trans A Math Phys Eng Sci; 2014 Sep; 372(2025):. PubMed ID: 25157192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metrics that matter for assessing the ocean biological carbon pump.
    Buesseler KO; Boyd PW; Black EE; Siegel DA
    Proc Natl Acad Sci U S A; 2020 May; 117(18):9679-9687. PubMed ID: 32253312
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Physiology and Ecology of Diapause in Marine Copepods.
    Baumgartner MF; Tarrant AM
    Ann Rev Mar Sci; 2017 Jan; 9():387-411. PubMed ID: 27814030
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Future ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle.
    McNeil BI; Sasse TP
    Nature; 2016 Jan; 529(7586):383-6. PubMed ID: 26791726
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The impact of whaling on the ocean carbon cycle: why bigger was better.
    Pershing AJ; Christensen LB; Record NR; Sherwood GD; Stetson PB
    PLoS One; 2010 Aug; 5(8):e12444. PubMed ID: 20865156
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Small copepods could play a big role in the marine carbon cycle.
    Tarrant AM
    Bioessays; 2020 Dec; 42(12):e2000267. PubMed ID: 33164234
    [No Abstract]   [Full Text] [Related]  

  • 28. Reconciliation of the carbon budget in the ocean's twilight zone.
    Giering SL; Sanders R; Lampitt RS; Anderson TR; Tamburini C; Boutrif M; Zubkov MV; Marsay CM; Henson SA; Saw K; Cook K; Mayor DJ
    Nature; 2014 Mar; 507(7493):480-3. PubMed ID: 24670767
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of nutricline depth in regulating the ocean carbon cycle.
    Cermeño P; Dutkiewicz S; Harris RP; Follows M; Schofield O; Falkowski PG
    Proc Natl Acad Sci U S A; 2008 Dec; 105(51):20344-9. PubMed ID: 19075222
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nutrients that limit growth in the ocean.
    Bristow LA; Mohr W; Ahmerkamp S; Kuypers MMM
    Curr Biol; 2017 Jun; 27(11):R474-R478. PubMed ID: 28586682
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potential acidification impacts on zooplankton in CCS leakage scenarios.
    Halsband C; Kurihara H
    Mar Pollut Bull; 2013 Aug; 73(2):495-503. PubMed ID: 23632089
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensitivity to ocean acidification parallels natural pCO2 gradients experienced by Arctic copepods under winter sea ice.
    Lewis CN; Brown KA; Edwards LA; Cooper G; Findlay HS
    Proc Natl Acad Sci U S A; 2013 Dec; 110(51):E4960-7. PubMed ID: 24297880
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inter-annual variability of transparent exopolymer particles in the Arctic Ocean reveals high sensitivity to ecosystem changes.
    Engel A; Piontek J; Metfies K; Endres S; Sprong P; Peeken I; Gäbler-Schwarz S; Nöthig EM
    Sci Rep; 2017 Jun; 7(1):4129. PubMed ID: 28646231
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump.
    Agusti S; González-Gordillo JI; Vaqué D; Estrada M; Cerezo MI; Salazar G; Gasol JM; Duarte CM
    Nat Commun; 2015 Jul; 6():7608. PubMed ID: 26158221
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anthropogenic climate change impacts on copepod trait biogeography.
    McGinty N; Barton AD; Record NR; Finkel ZV; Johns DG; Stock CA; Irwin AJ
    Glob Chang Biol; 2021 Apr; 27(7):1431-1442. PubMed ID: 33347685
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced transfer of organic matter to higher trophic levels caused by ocean acidification and its implications for export production: A mass balance approach.
    Boxhammer T; Taucher J; Bach LT; Achterberg EP; Algueró-Muñiz M; Bellworthy J; Czerny J; Esposito M; Haunost M; Hellemann D; Ludwig A; Yong JC; Zark M; Riebesell U; Anderson LG
    PLoS One; 2018; 13(5):e0197502. PubMed ID: 29799856
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Natural Variability and Anthropogenic Trends in the Ocean Carbon Sink.
    McKinley GA; Fay AR; Lovenduski NS; Pilcher DJ
    Ann Rev Mar Sci; 2017 Jan; 9():125-150. PubMed ID: 27620831
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation.
    Martínez-Botí MA; Marino G; Foster GL; Ziveri P; Henehan MJ; Rae JW; Mortyn PG; Vance D
    Nature; 2015 Feb; 518(7538):219-22. PubMed ID: 25673416
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2.
    Watson AJ; Bakker DC; Ridgwell AJ; Boyd PW; Law CS
    Nature; 2000 Oct; 407(6805):730-3. PubMed ID: 11048716
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glacial/interglacial variations in atmospheric carbon dioxide.
    Sigman DM; Boyle EA
    Nature; 2000 Oct; 407(6806):859-69. PubMed ID: 11057657
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.